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Abstract
Frameworks are a valuable way to share designs and implementations on a large

scale. Client programmers, however, have difficulty using frameworks. They find
it difficult to understand non-local client-framework interactions, design solutions
when they do not own the architectural skeleton, gain confidence that they have
engaged with the framework correctly, represent their successful engagement with
the framework in a way that can be shared with others, ensure their design intent is
expressed in their source code, and connect with external files.

A design fragment is a specification of how a client program can use framework
resources to accomplish a goal. From the framework, it identifies the minimal set of
classes, interfaces, and methods that should be employed. For the client program, it
specifies the client-framework interactions that must be implemented. The structure
of the client program is specified as roles, where the roles can be filled by an actual
client program’s classes, fields, and methods. A design fragment exists separately
from client programs, and can be bound to the client program via annotations in
their source code. These annotations express design intent; specifically, that it is the
intention of the client programs to interact with the framework as specified by the
design fragment.

The thesis of this dissertation is: We can provide pragmatic help for program-
mers to use frameworks by providing a form of specification, called a design frag-
ment, to describe how a client program can correctly employ a framework and by
providing tools to assure conformance between the client program and the design
fragments.

We built tools into an IDE to demonstrate how design fragments could alleviate
the difficulties experienced by client programmers. We performed two case studies
on commercial Java frameworks, using demo client programs from the framework
authors, and client programs we found on the internet. The first case study, on the
Applet framework, yielded a complete catalog of twelve design fragments based on
our analysis of fifty-six Applets. The second case study, on the larger Eclipse frame-
work, yielded a partial catalog of fourteen design fragments based on our analysis of
more than fifty client programs.

This work provides three primary contributions to software engineering. First, it
provides a new technique to help programmers use frameworks. Second, it provides
a systematic way to increase code quality. Design fragments provide a means to
communicate known-good designs to programmers, and, unlike simple copying of
examples, a means of influencing the uses of that design so that revisions can be
propagated. Third, it provides an empirically-based understanding of how clients
use frameworks, which aids researchers in choosing research directions and aids
framework authors in delivery of new frameworks.
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Chapter 1

Introduction

Engineers in most domains encode know-how in the form of often-reused solutions. Software
engineers are no exception. For example, software libraries collect together reusable functions
or objects that can be used as-is. With libraries, the client programmer’s code requests a service
provided by the library, and then resumes once the library call has finished. The client code forms
the architectural skeleton of the completed system and the library code is used to implement the
smaller details, like math routines or socket communication. This master-servant relationship
between the client program and library is easy to understand but prevents the reuse of the archi-
tectural skeleton. Unlike libraries, object-oriented frameworks enable reuse of the architectural
skeleton.

Object-oriented frameworks, or in this document just “frameworks,” provide partially com-
plete skeleton applications for a particular domain, such as windowing systems or applica-
tion servers. Examples of frameworks include Enterprise Java Beans (EJB) [47], Microsoft
.NET [15], and Java applets [63]. While both libraries and frameworks are ways to reuse soft-
ware, the defining difference between them is that a program interacting with a library requires
services from that library, but a program interacting with a framework both requires services
from, and provides services to, that framework. The client program must respond to frame-
work requests and must satisfy any constraints that the framework imposes; for example the EJB
framework requires that client programs not start their own threads, and windowing frameworks
like .NET require that client programs complete some requests within milliseconds. The price
that client programmers pay for reusing the architectural skeleton provided by a framework is
that they must play by the framework’s rules.

1.1 Example

To illustrate the nature of the client-framework interactions, let us consider an example from the
Eclipse framework. In this example, a programmer has written a client program that places a tree
view on the screen, much like the File Explorer view in Microsoft Windows. The excerpt of Java
source code in Figure 1.1 shows the parts of the client program that are needed to listen to and
respond to changes in the user’s selection; the rest of the client program has been elided. The
bolded sections of the source code are references to framework classes, interfaces, and methods.
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...
public class SampleView extends ViewPart

implements ISelectionChangedListener {

private TreeViewer viewer;

public void createPartControl(Composite parent) {
viewer.addSelectionChangedListener(this);
...

}
public void dispose() {
viewer.removeSelectionChangedListener(this);
...

}
public void selectionChanged(SelectionChangedEvent event) {

ISelection s = event.getSelection();
IStructuredSelection ss = (IStructuredSelection) s;

...
}

...
}

Figure 1.1: Responding to selection changes in a tree view in the Eclipse framework

The programmer’s intent with this code is to be notified when the user clicks on the tree view
and changes the selection. This intent is realized via ten client-framework interactions between
this client program and the framework, as shown in Figure 1.2. The framework provides a super-
class, called ViewPart, to help with presenting a TreeViewer. The ViewPart class defines
callback methods that correspond to different times in its lifecycle; two of these lifecycle callback
methods are the createPartControl and dispose methods. In createPartControl,
our client program requests that it receive events corresponding to user selection changes. It does
this by invoking the addSelectionChangedListener method on its TreeViewer (the
code where this TreeViewer was created is not shown). Symmetrically, in the dispose
method it invokes removeSelectionChangedListener on the TreeViewer. In order
for event registration and deregistration to work, this class must implement the ISelection-
ChangedListener interface and the one method on that interface, getSelection. The
framework will invoke getSelection on the client when the user’s selection changes, pass-
ing in an object from the framework, a SelectionChangedEvent. At that point the client
can find out what was selected by invoking getSelection, but this yields an ISelection,
not the subclass IStructuredSelection. However, since TreeViewers always yield
IStructuredSelections, it is safe to downcast the ISelection to an IStructured-
Selection.

Programmers who are familiar with design patterns [23] will see that the Template pattern is
used here. The ViewPart superclass defines an abstract algorithm and lets its subclass fill in
the details – in this case the createPartControl and destroy methods are intended to
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1. Subclasses from (framework class) ViewPart

2. Implements (framework interface) ISelectionChangedListener

3. Holds field of type (framework class) TreeViewer

4. Overrides callback method createPartControl from ViewPart

5. Invokes method addSelectionChangedListener on the TreeViewer within the
createPartControl method

6. Overrides callback method dispose from ViewPart

7. Invokes method removeSelectionChangedListener on the TreeViewer
within the dispose method

8. Implements method selectionChanged (from framework interface ISelection-
ChangedListener)

9. Invokes method getSelection on (framework class) parameter of type Selection-
ChangedEvent within the selectionChanged method

10. Downcasts ISelection to IStructuredSelection (both framework interfaces)
within the selectionChanged method

Figure 1.2: Client-framework interactions

contain those details. Additionally, the register/deregister method calls, plus the interface, is a
use of the Observer pattern.

Two parts of this solution would not be obvious simply by knowing the standard design
patterns. First, how the two patterns can be combined: that these particular lifecycle callback
methods are the appropriate ones to do registration/deregistration. Since the framework changes
state, a method call that will succeed during one callback may fail during another. In our ex-
ample, these two lifecycle callback methods are appropriate places to coordinate with the event
registration/deregistration, but the class constructor is not. The second non-obvious part is that
the ISelection can be downcast to an IStructuredSelection. This is not generally
true; it is only true because we are listening to a TreeViewer and not some other kind of
viewer.

The solution shown in this example does not have tight locality, since the client-framework
interactions are scattered across the program. Not only does the client interact with three frame-
work interfaces and four framework classes, its interactions are spread across the class definition
and multiple methods in the class.

Although this code describes a set of client-framework interactions, which can be viewed as
interactions between two components, it is implemented with standard object-oriented mecha-
nisms like subclassing and method overriding. Historically, this was a benefit because it allowed
frameworks to be developed from standard object-oriented languages, but today it is a hindrance
in that it makes these architecturally significant interactions blend in with other run-of-the-mill
method calls.

Most languages today have a first class representation for the implementation-hiding interface
to libraries, such as a Java interface or a C++ header file, but no similar representation exists
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to declare the currently non-local client-framework interaction or encapsulate the framework
implementation.

1.2 Difficulties Using Frameworks
A glance at the above example reveals that client-framework interactions can be complex. As a
result, programmers find it difficult to understand non-local client-framework interactions, design
solutions when they do not own the architectural skeleton, gain confidence that they have engaged
with the framework correctly, represent their successful engagement with the framework in a way
that can be shared with others, ensure their design intent is expressed in their source code, and
connect with external files. Here are more details on those difficulties, with a fuller discussion
appearing in Section 2.3:

Understand non-local client-framework interactions. Client programmers have a concep-
tually simple goal, like in the example above, but mechanically that may involve subclassing,
implementing interfaces, overriding callback methods, and registering/deregistering for events –
and these interactions are not co-located in the source code. This complexity yields difficulty
both when designing solutions and when comprehending existing code. Programmers have diffi-
culty discovering, learning, and implementing such complex interactions. Programmers evolving
an already written program have difficulty piecing together the non-local parts that contribute to
a single goal. A single statement in a client program, such as a call to the framework, may be
present to enable more than one goal of the client program, which further complicates program
evolution.

Design solutions without owning the architecture. A programmer designing a solution
must do so within the solution space defined by the intersection of his problem domain and im-
plementation constraints. A programmer will have little difficulty finding an acceptable solution
when presented with a requirements document and a Java compiler. However, when the pro-
grammer chooses to use a framework then the solution space may be quite constrained, making
it difficult to find one of the handful of acceptable solutions. The programmer may derive value
from the way the framework constrains his actions, but he has difficulty inventing solutions that
conform to those constraints.

Gain confidence of compliance. Programmers can test their code as always. However, since
their code acts as a client of the framework there is an additional worry about poorly-understood
contracts. For example, will the framework ever pass null as a parameter, what is the sequence
of callbacks, or can this service method safely be requested during this callback?

Represent solutions. Despite the required complex client-framework interactions, natural
language tutorials and example code are still the most common means of expressing known-good
solutions. Consequently, it is difficult and inefficient to share understanding between program-
mers. Learning does take place but it is massively repeated as each programmer has to learn or
infer what is already known by many others.

Encode design intent. Once a programmer codifies his design in a client program it is
tedious for another programmer to discern the original intent, and often impossible for tools.
The fact that the mechanics are non-local often prohibits the use of “intention revealing” method
names [5] that could otherwise informally capture the intent of some opaque source code.
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Connect with external files. Client programs for the early frameworks used only the object-
oriented mechanics available in the programming language, but modern frameworks may also
require the client to write an external file. This file is declarative and is often XML. In the
Struts [32] framework, for example, processing nodes are written in Java but the connections
between them are declared in an external XML file.

1.3 Coping Strategies
Despite these difficulties, client programmers are rational in their choice to use frameworks.
Modern frameworks can be millions of lines of code [11], and the cost of recreating them is
sufficiently high that client programmers endure the difficulties. Two essential strategies, what
Polya would call heuristics [50], for overcoming the difficulties have emerged: devising a solu-
tion from scratch via a full understanding of the framework, and recreating an example solution.
As we will discuss in Section 9.2.1, client programmers use both strategies in varying amounts
based on the programmer’s temperament. We refer to these strategies using the shorthand names
first principles and examples.

By first principles we mean a strategy where the client programmer studies the workings of
the framework, creates a mental model of how the framework, then devises a client program that
accomplishes his goal. The creation of a mental model necessarily involves surveying the avail-
able framework classes, interfaces, and methods; coming to an understanding of the semantics
of framework methods, either through provided documentation or other means; understanding
the sequence of framework callbacks; understanding which framework methods can be called
by the client during which callbacks, and understanding the design patterns used by the frame-
work. The framework may have additional constraints on client programs, including restrictions
on concurrency, timing, or transactions. With small frameworks, it is possible to read much of
the framework source code to learn this information, but with large frameworks, the programmer
must rely primarily upon API documentation.

Predicates can express framework constraints and required post-conditions. Consequently,
an advantage of this strategy is that tools can check specifications, providing client programmers
with conformance assurance. There is potential for the set of constraints to be completely spec-
ified, but in practice they are usually not fully understood or documented. For example, visual
controls in Microsoft’s ASP.NET have eleven lifecycle callbacks [44], yet their documentation is
scattered and incomplete [52]. Consequently, client programmers may master all the published
knowledge, yet still have difficulty designing solutions. The client programmer’s initial invest-
ment to learn the framework principles can be amortized if he uses the framework often, and
mastery of general design patterns will help him to learn the next framework.

An inherent limitation of this strategy is that it does not help a client programmer to find
a solution that satisfies both his requirements and the framework constraints. Knowing that an
electrical device must plug into a framework that supplies 115 volts and 10 amperes is important,
but does not guide an engineer to design a television or an air conditioner. Another limitation is
that this strategy does not differentiate between typical and atypical use of the framework, such
as which lifecycle callbacks are typically used to register for events.

The examples strategy seeks to avoid the upfront costs and undocumented constraints inher-
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ent in the first principles strategy. The client programmer identifies an existing solution that
matches his current goal. Existing solutions are represented in a variety of forms, including how-
to articles and recipes, but most common are other client programs. Most framework authors
deliver a small number of example client programs to show potential clients how to use parts
of the framework. These example client programs can be considered an informal map of the
framework, where the client-framework interactions they use are known territory, and the possi-
ble interactions they do not exercise are unknown territory. Programmers explore this unknown
territory at their own risk because the known territory is better debugged. Client programmers
who use the examples strategy must identify an appropriate example, identify the set of relevant
client-framework interactions needed, and reproduce these interactions in their own code. This
is the strategy that is recommended by leading framework authors [22]. Examples minimize
the amount that client programmers must learn about the framework before successfully making
progress.

There are downsides with this strategy too. Client programmers may have difficulty identi-
fying examples that match their goals. Once they have identified an example, extraction of the
example from its context may fail because of under-inclusion of necessary code, or may become
bloated because of over-inclusion of irrelevant code. Because it is not based on a principled
understanding of framework constraints, composing two working examples may yield a new
program that violates a framework constraint.

Examples are usually embedded in entire programs, or are written up in natural language
articles, making it difficult or impossible for tools to check conformance. Also, since an example
shows just one way of accomplishing a goal, the client programmer may have difficulty building a
general understanding of the framework. Perhaps most importantly in the long term, any strategy
involving code copying creates a maintenance problem, since improvements or bug fixes in the
original cannot easily be propagated into the copies.

The choice of representing knowledge in a first principles strategy or an examples strategy
appears in many contexts. In the documentation of requirements, it is seen in functional require-
ments versus use cases, which are examples of first principles and examples, respectively. In
the field of artificial intelligence, knowledge-based systems can choose between model-based
representations [67] and case-based representations [56].

An ideal solution would incorporate the advantages of both the first principles strategy and
the examples strategy while avoiding most of their disadvantages. Such a strategy would help
programmers quickly find solutions to problems, as in the examples strategy, but enable tool
assistance and aid learning about the framework, as in the first principles strategy.

1.4 Design Fragments
In this thesis we propose to help client programmers by providing design fragments, which ex-
press known-good ways to use a framework. A design fragment is a specification of how a
client program can use framework resources to accomplish a goal. It identifies the minimal
set of framework classes, interfaces, and methods that should be used, and specifies the client-
framework interactions that must be implemented by the client program. Design fragments exist
separately from client programs, and are bound to the source code via annotations. A client pro-
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gram bound to a design fragment expresses the programmer’s design intent. That is, bindings
in the source code express the intent of the client program to interact with the framework as
specified by the design fragment.

Since a design fragment describes a single way to use a framework, it has the advantages of
the examples strategy. Additionally, because design intent is expressed, analysis tools can pro-
vide client programmers with conformance assurance, as in the first principles strategy. A design
fragment helps client programmers to learn the existing framework API by providing references
to the parts needed to accomplish a goal. These references allow the client programmer to begin
learning the generality of what is offered by the framework. As such, design fragments blend the
benefits of both the examples strategy and the first principles strategy.

A design fragment is composed of the following four parts:

1. The name of the design fragment.

2. The goal of a client programmer that is accomplished by this design fragment.

3. A description of what the programmer must build to accomplish the goal of this design
fragment, including the classes, methods, and fields that must be present. This description
also includes the behavior of these methods.

4. A description of the relevant parts of the framework that interact with the programmer’s
code, including the callback methods that will be invoked, the service methods that are
provided, and other framework classes that are used.

A design fragment can express the client-framework interactions from the example shown earlier,
the Eclipse selection listener. Figure 1.3 shows a UML static structure diagram of the design
fragment, with the classes, interfaces, and methods from the framework appearing above the bar.
Below the bar is a class (RoleView) with a field (roleTree) and three methods (create-
PartControl, destroy, and selectionChanged). While the names of the framework
resources are predetermined, the class named RoleView will be bound to the client program’s
class that engages in this design fragment.

In addition to specifying the client program’s structure, a design fragment also describes its
required behavior. The design fragment specifies the required method calls and downcasting of
objects described in client-framework interactions 5, 7, 9, and 10 listed earlier in Figure 1.2.
Analysis tools can check that the source code implements these interactions correctly, subject to
the sophistication of the analysis. Our simple analysis tools can check all but the last interaction,
the downcast from ISelection to IStructuredSelection. Specifications of the design
fragment structure and behavior are tool-readable, except for any specifications written in natural
language.

Design fragments are collected together into a catalog, and client programmers can search
the catalog to find a design fragment that matches their needs. When there is more than one way
to accomplish a goal, the catalog will contain design fragments with variants.

A client programmer must express his intent to comply with a design fragment by adding Java
5 annotations to the source code. First, he declares that the source code implements a particular
design fragment, and then binds any roles in the design fragment to the corresponding parts
of the source code. In our selection change listener example, he would add an annotation like
the following to declare that this code implements the SelctionChangedListener design
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Figure 1.3: Design fragment structure of Tree View Selection in Eclipse

fragment, giving this instance of the design fragment the name scl1:

@df.instance(df="SelectionChangedListener", inst="scl1")

This design fragment has five roles to be bound: the role for the class RoleView, the role
for the field roleTree, and the roles for the three methods. The RoleView class binding is
shown in Figure 1.4, with the binding annotation in bold. With the current tooling, these binding
annotations must be written by the programmer, but we see no impediments to wizard-style tools
that guide the programmer and write the annotations automatically. These bindings are enduring
design intent that can be used by other programmers, and by tools, to understand the source
code. Using our design fragment tools, a client programmer can browse a catalog, list the design
fragments, and navigate directly to the source code where they are used.

Once a programmer has bound a design fragment to the source code, analysis tools can
ensure conformance with the structural and behavior constraints, both now and as the source
code evolves. For example, our analysis tools will warn the programmer if he fails to deregister
for selection changed events in the destroy method. The expressed design intent in these
bindings unlocks future benefits. First, the design fragment specification will be elaborated with
additional checkable behavior constraints as they are discovered or documented, or as the design
fragment is debugged. And second, the sophistication of analysis tools will increase, allowing
previously expressed, but uncheckable, specifications to be checked, such as the downcasting in
our Eclipse selection listener example. This future, where declaration of design intent enables
code quality increases, is in marked contrast to the maintenance problems of current cut-and-
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...
@df.bindings({

@df.binding(inst="scl1", role="RoleView")
})
public class SampleView extends ViewPart

implements ISelectionChangedListener {
...
}

...
}

Figure 1.4: Binding design fragment roles

paste practices.
Design fragments and the associated tools directly address the difficulties raised earlier. De-

sign fragments concisely explain the non-local client-framework mechanics. Client programmers
can use design fragments as known-good solutions rather than inventing new solutions. Client
programmers are provided with assurances that their code conforms to the design fragment and
therefore engages with the framework correctly. Design fragments are specifications that express
known-good solutions that can be shared with other programmers. And through the source code
annotations, client programmers encode their design intent, enabling other programmers to better
comprehend the program.

1.5 Research Questions
The first principles strategy has been investigated before. Role modeling has been applied to
client-framework interactions [55] and seeks to explain the patterns employed by the framework
authors. Earlier work such as Contracts [31] describes the constraints the framework places on
all client programs and was later extended in the Framework Constraint Language [33].

The examples strategy has also been investigated before. Design fragment specifications are
similar to JavaFrames [28], which are tool-readable patterns of client-framework interaction.
JavaFrames in turn are descended from textual recipes [21, 41], which describe a known-good
way to use a framework. We have extended JavaFrames’ expressiveness by adding references to
the framework elements programmers must interact with, and bridging object-oriented languages
and declarative configuration files.

Despite the research into these strategies, many open questions remain. How do client pro-
grammers interact with frameworks – are they inventing new patterns of interaction or are they
following pre-existing patterns? Is it practical to collect examples of client-framework inter-
actions into a catalog, or are there too many varieties to count? Do design fragments explain
most of the observed client-framework interactions, or are most of the client-framework interac-
tions in a client program unprecedented? What kinds of tools should be provided to overcome
the problems with using frameworks? What are the structural and behavioral constraints that
design fragments should express, and are there opportunities for analysis tools to assure their
conformance?
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In short, what has not been demonstrated is the pragmatism of the examples strategy and the
ability of assurance tools to help. This dissertation investigates the following thesis:

We can provide pragmatic help for programmers to use frameworks by providing a
form of specification, called a design fragment, to describe how a client program
can correctly employ a framework and by providing tools to assure conformance
between the client program and the design fragments.

Our evidence includes case studies performed on real frameworks, real languages, and real client
programs. We demonstrate that the example strategy is pragmatic because there is limited variety
in how these real programs interact with real frameworks. That is, two client programs that use
the same framework are likely to interact with that framework in the same way. Collecting ex-
amples of uses of a large framework is not onerous and the resulting catalog of design fragments
is small. We also show that it is possible for analysis tools to assure conformance between the
source code and the constraints in the design fragment, further helping the client programmer.

This work provides three primary contributions to software engineering. First, it provides a
new technique to help programmers use frameworks. Design fragments and the tools directly
address the problems we have identified with frameworks. Design fragments improve on previ-
ous abstractions by describing relevant resources in the framework, connecting object-oriented
code with external declarative configuration files, and by enabling new constraints and tools to
be added to our predefined set.

Second, it provides a systematic way to increase code quality. Design fragments provide
a means to communicate known-good designs to programmers, and, unlike simple copying of
examples, a means of influencing the uses of that design so that revisions can be propagated.
Bindings between design fragments and client programs express the programmer’s design intent,
and this enduring expression of intent enables conformance assurance from both existing, and
future, analysis tools.

Third, it provides an empirically-based understanding of how clients use frameworks, which
aids researchers in choosing research directions and aids framework authors in delivery of new
frameworks. Specifically, the observed variety of client-framework interactions is very low, de-
spite the opportunity for high variety.

This dissertation opens by providing background on object-oriented frameworks, then pro-
ceeds to articulate the specific research hypotheses we have investigated. Details on the design
fragments specification and tooling are presented next. Two case studies that apply design frag-
ments to the Applet and Eclipse frameworks are then presented, followed by a survey of related
work and our conclusions.
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Chapter 2

Object-Oriented Frameworks

This chapter provides an overview of object-oriented frameworks and differentiates them from
traditional libraries. The essential characteristic of frameworks is the inversion of traditional
control – the framework decides when and where to call the client code instead of the reverse
– but this characteristic is also the source of increased complexity. Client programmers must
discover how to accomplish their goals within the constraints of the framework, ensure that their
programs use the framework correctly, and understand existing programs that they are evolving.
Current best practices, including copy-and-paste programming and reading API documentation,
are incomplete solutions to these challenges.

2.1 Object-Oriented Frameworks

There are two often-used definitions [38] for object-oriented frameworks. The first definition
describes the framework’s purpose: “A framework is the skeleton of an application that can
be customized by an application developer.” The second definition describes the structure of a
framework: “A framework is a reusable design of all or part of a system that is represented by a
set of abstract classes and the way their instances interact.”

An object-oriented framework is characterized by an inversion in the normal control rela-
tionship between the programmer and the library [55]. In the traditional usage of a library, the
programmer decides when to invoke library functions and which ones to invoke. In a framework,
the programmer is told by the framework when and where his code will be called.

Programmers are willing to sacrifice this control in order to receive other benefits. Exam-
ples of benefits include automatic management of transactions and concurrency (Enterprise Java
Beans (EJB) [47]), operation within a windowing operating system (Microsoft .NET [15]), and
interoperability with other tools in a software engineering environment (Eclipse framework [12]).
Typically, the size of the framework code will dwarf the size of applications written within it.
The Eclipse framework, for example, is almost two million lines of Java code [11] while an
application written to work inside of it may be as small as a few dozen lines.

Using a framework also entails a reduction in risk for the client programmer. The framework
author has extensive knowledge of the domain that is represented in the framework’s code. The
framework’s code has also been used many times and bugs have been discovered and eliminated.
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The framework itself may evolve over time to incorporate improved understanding of the domain
and to eliminate more bugs. Had he not chosen to use a framework, the client programmer would
have to do all these himself, with a corresponding increase in risk that he does them incorrectly.

The next section describes object-oriented and framework mechanisms. Terminology that
we will use in this dissertation has been italicized. We refer back to the tree view client program
from the introduction to provide concrete examples of the concepts we describe.

2.2 Framework Mechanisms
Object-oriented frameworks are built on top of the standard mechanisms in object-oriented lan-
guages. Java is an object-oriented language and defines classes of objects that can contain fields
(data) and methods (behavior). Classes can be related in a hierarchy; in Java, a subclass is said
to extend a superclass. Interfaces are collections of methods without implementations. A class
can implement an interface by providing method implementations for all of the methods defined
in that interface. Classes, fields, methods, and interfaces can be declared to be public, private, or
protected, which manipulates which objects can refer to them.

Subclasses inherit all of the fields and methods from their superclass. A subclass at the
bottom of a hierarchy of classes will inherit all of the fields and methods up to the top of the
hierarchy. A subclass can override any method defined in its superclass by providing a new
definition for that method. It is not unusual for a class to have the majority of its fields and
methods provided by its superclasses.

Classes may declare methods that are abstract, and not provide an implementation for them.
Such classes are themselves abstract, which means that it is impossible to create an instance of
them directly. A subclass can override the abstract method and it would be possible to create an
instance of that subclass.

The template pattern uses these mechanics to define an abstract algorithm in the superclass
that is refined in a subclass. Here is a simple example: the superclass defines an algorithm that
calls methods A, B, and C. These three methods are defined in the superclass, but method B is
defined as abstract and referred to as a template method. A subclass would complete the pattern
by extending the superclass and defining a non-abstract method B. This pattern is valuable since
it allows a generic algorithm to be specified once, in the superclass, and refined many times
through the creation of subclasses.

Frameworks build on these basic object-oriented mechanisms. The framework author pro-
vides a set of classes and interfaces that cannot be changed by the client programmer. Frame-
work classes provide service methods that may be called by the client program; other methods
are private implementation details. Referring to the introductory example in Figure 1.1, ex-
amples of service methods are addSelectionChangedListener, removeSelection-
ChangedListener, and getSelection.

Altogether, the framework classes define the architectural skeleton to which the client pro-
gram must conform [39]. Client programs of the framework define their own classes that may
extend classes from the framework and may implement interfaces from the framework. Gener-
ally, when the client program is started, the framework code starts running first and at selected
times it will run the methods from the client program.
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Figure 2.1: Applet callbacks

These “selected times” are referred to as callbacks from the framework. A callback is a trans-
fer of control from the framework to the client program and is accomplished by the framework
invoking a method defined in the client program, usually overridden template methods. From the
client program’s perspective, callbacks can happen in response to spontaneous events in the sys-
tem, such as when the user clicks a button or a web server receives a request. Lifecycle callbacks
communicate the state of a framework class as it progresses through its lifecycle. For example,
the framework may callback on the client program to let it know that an object is being created,
activated, deactivated, and destroyed. Figure 2.1 shows the sequence of callbacks for the Ap-
plet framework. Referring to the introductory example from Figure 1.1, examples of lifecycle
callbacks are createPartControl and dispose. The selectionChanged method is
a callback, but since it is generated spontaneously, it is not a lifecycle callback.

The source code written by the client programmer does not run except during callbacks,
so callbacks are the only opportunity for the client program to influence the behavior of the
framework. The nature and frequency of the callbacks constrains the kind of influence a client
program can have, because the client programmer cannot change the framework classes and
consequently cannot change the callbacks. During callbacks, client programs can implement
their own logic as well as calling the service methods on the framework. However, not all
framework service methods are can legally be called from all callbacks. Callback methods often
pass objects from the framework as parameters to the client program. The framework may expect
the client program to hold on to these objects or it may expect them to be released by the end of
the callback method.

A client program may interact with a framework in ways that are allowed by object-oriented
programming languages. These client-framework interactions include: subclassing, implement-
ing interfaces, overriding superclass methods, calling framework service methods, creating in-
stances of framework classes, and holding on to framework objects. In order to accomplish
a single goal, client programmers will employ multiple client-framework interactions in their
program since there is usually not a one-to-one mapping between them. The client-framework
interactions from the introductory example were listed in Figure 1.2.

Partly as a result of the low-level nature of these client-framework interactions, the full set of
services provided by a framework tends to be large and detailed. This is in contrast to Service
Oriented Architectures [13] whose set of services tend to be smaller and more aggregated. The
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designer of a framework, however, has control over the level of detail and will choose it deliber-
ately. A more detailed and rich set of services will be harder for clients to learn but will enable
the creation of a greater range of client programs.

2.3 Why Frameworks Are Difficult for Clients

Despite being built from the same materials as other object-oriented programs, frameworks pro-
vide client programmers with new difficulties that arise from the nature of the client-framework
interactions.

2.3.1 Understand Non-Local Client-Framework Interactions

When examining a client program, client programmers are faced with the difficulty of piecing
together non-local client-framework interactions to understand the program. To accomplish a
single, coherent task, the program must usually contain multiple client-framework interactions,
and these interactions cannot be co-located. For example, a class declares its superclass and
the interfaces it implements at the beginning of the class definition, defines methods for multi-
ple callbacks throughout the class body, and calls framework service methods from within the
callbacks. These interactions may be defined across multiple classes in the client program.

The difficulty is multiplied when a client program accomplishes multiple goals, as most do.
The programmer reading the source code must decide if a particular interaction, say a call to
a service method, exists to accomplish one goal or many. Our case studies reveal that 15% of
client-framework interactions exist to accomplish multiple goals (Section 7.4).

Another compounding factor is that client programmers have difficulty identifying the parts
of the framework that can be changed [38]. Since frameworks are built using the same raw mate-
rials as any other object-oriented program, it is difficult to identify which parts of the framework
are intended to be hidden machinery and which parts are callback methods or service methods.

The essential nature of a client framework program makes it more difficult to comprehend
than an equivalent program that uses libraries. Since frameworks typically provide the skeletal
structure and control flow of an application, browsing the client program’s source code provides
only disconnected clues to the application’s overall structure and behavior. This is in contrast to
an application similarly written with libraries, where the programmer’s code reveals the structure
and control flow. Comprehension of the whole is easier when viewing the top of the tree rather
than the leaves. When using a library, the programmer writes the most abstract parts of the
program, and the library handles the details. Understanding the big picture is easy because these
most abstract parts are usually localized within the client program. Conversely, when using a
framework, the programmer provides the details to complete the framework’s skeleton. Because
of the framework mechanics, these details will be scattered across many classes and methods in
his client program. When reading a client program, understanding the big picture is much harder
because of this non-locality.

14



2.3.2 Design Solutions Without Owning the Architecture
Since the framework owns the architectural skeleton of the program, callbacks are often the only
opportunity for client programmers to influence how the client program runs. When they design a
framework, framework authors consider a set of ways that they expect client programs to use the
framework. Some frameworks have many fine-grained callbacks, others are coarser, depending
on what the framework author expects will be needed. Often times a client programmer wants
to do something that was not anticipated by the framework author, and is therefore difficult to
accomplish with the provided callbacks.

When such mismatch occurs between the client programmer’s intended design and the avail-
able callbacks, it is the design, not the framework, that must be changed. A client programmer
with incomplete knowledge of the framework does not yet know if what he wants to do is sim-
ply impossible, if he needs to continue searching for an appropriate callback, or if he needs to
creatively design using the known callbacks. The client programmer can spend a considerable
amount time deciding which of these three alternatives is correct.

An example of something that is simply impossible is found in early versions of the Enter-
prise Java Beans framework, which lacked a means to schedule a Bean to execute at a particular
time, since Beans could only respond to external stimuli. If a client program needed to generate
a report at 2 A.M. every day, it was impossible to do this completely within the EJB framework.
A common workaround was to create a program that would send a message to the EJB program
at 2 A.M., and at that point it could respond to the message and generate the report.

2.3.3 Gain Confidence of Compliance
With perfect knowledge of how the framework works, a programmer may still have a tedious time
verifying that the client program is correct. The client program may respond to many callbacks
from the framework and this state space may be large. For example, a program may receive
lifecycle callbacks like init and destroy, but also register for events like mouse clicks. The
programmer may wonder about the interleaving of these events, such as “Will I ever receive a
mouse click event before I have completed init?” Or wonder, “Is it always legal for me to call
this service method from this callback?”

Unfortunately, since framework documentation is not always complete and not all interac-
tions have been foreseen, this tedious problem becomes even more difficult. And as a program
is evolved by various programmers, their confidence that all framework constraints have been
satisfied can easily erode.

2.3.4 Represent Solutions
It is difficult to find a way to make the framework do what you want, so once you have discovered
it you would like to represent that understanding and share it with other programmers. It is
possible to ask other programmers to look at your source code, but they may make mistakes
inferring the solution because the client-framework interactions are non-local. Even when the
example is copied correctly, the canonical solution may change, but since there is no path to
follow from the original to the copies, it is difficult to propagate the new solution.
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Writing a tutorial or a book is an effective way to describe your solution, but not everyone
has a book publisher. These solutions are documented in natural language, so they will not be
easily readable by tools. In contrast, important parts of API documentation are readable by tools,
which enables programmers using IDEs to click on a class or method and navigate, without fail,
to its documentation. Providing programmers with immediate, contextual assistance within IDEs
is helpful because it minimizes their disruption when presented with a problem. Nor does not
require them to remember what they read in a book some time in the past.

Because programmers lack an effective way to represent solutions, client programmers con-
tinue to repeatedly re-learn and re-infer what is already known by others.

2.3.5 Encode Design Intent
Client programmers still have access to their standard informal techniques for encoding design
intent, including “intention revealing” method and field names. The necessary non-locality of
client-framework interactions, however, reduces the effectiveness of these techniques. It is not
possible to change the name of the framework callbacks to something that better reveals its
intention within the client program. It may also not be possible to refactor the code and co-locate
parts of an algorithm, providing that method with an intention revealing name.

Comments, too, are harder to use, unless the client programmer is diligent to place them in
every part of the non-local interaction. Our examination of client programs did not reveal any
that were so diligent. As a consequence, programmers reading the source code are left to infer
the client program’s original intent simply from the client-framework interactions themselves.

The phrase “design intent” can refer to relatively low-level details like whether or not a
parameter can be null, or range as high-level as architectural design. In the context of client
programs, the design intent that is difficult to express is what the collection of client-framework
interactions is expected to accomplish; that is, the goal in interacting with the framework. Such
design intent is approximately at the same level as that of a design pattern [23]. An example
might be, “It is my intent with this client program to respond to right-click mouse events by
popping up a context menu based on the item that the user has selected.”

2.3.6 Connect with External Files
The earliest object-oriented frameworks and client programs were written purely in an object-
oriented language. When the client program wanted to influence the framework, for example to
let the framework know that a new drawing shape had been defined for the graphical editor, the
client would call a framework service method to let the framework know about this new class.
One downside of this style is that since such logic is procedural, it is difficult to reason about
what shapes will be available when the tool runs.

To enable easier reasoning about such questions, frameworks are increasingly relying on
external declarative configuration files. The object-oriented language would still be used to define
the new shape for the graphical editor, but its existence would be declared to the framework in
the external file. This is a boon to frameworks such as Eclipse that use it to enable lazy-loading
of classes, and to frameworks such as EJB and Struts that use it to express connections between
components. All three of these frameworks use XML to express their configuration files.
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These external files, however, are a difficulty for client programmers. Their object-oriented
source code may be perfect but it will be completely ignored by the framework until the ap-
propriate declarative statements exist in the configuration file. While modern IDEs understand
the semantics of particular object-oriented languages, like Java, and provide warnings when the
client program tries to call methods that are not defined, they have been slow to understand the
connections between the configuration files and the source code. The Eclipse IDE has recently
started providing warnings if classes specified in the configuration file cannot be found in the
source code. The reverse is not the case, and it is difficult to provide when design intent is
absent.

2.4 Differences Compared to Libraries
Both libraries and frameworks offer large scale reuse of objects. Libraries are like servants ready
to do the bidding of the client program; the client program always decides when to call the
library. Libraries may require that requests from the client have the right kinds of parameters
or that the requests are sequenced correctly. But libraries never require that the client program
has a particular structure, nor do they ever call the client program. Frameworks do call the client
program, and it is this inversion of control that is unique to frameworks.

A library publishes a list of provided services that it provides for client programs. A client
program is said to require services that are defined by the library. A client program of a frame-
work, however, both provides and requires services of a framework. It provides services by
implementing framework callback methods. It requires services by calling framework service
methods.

While inversion of control is the essential difference between libraries and frameworks, other
differences exist between them. It is possible for libraries to require clients to call their methods
in a particular sequence, or protocol, but this is uncommon. Such a restriction requires the library
itself to be stateful in order to track the protocol, and this too is less common than with frame-
works, which are nearly universally stateful. A stateful library with a protocol to its methods is
likely still easier to use than a corresponding framework because, with the library, a client can
often localize its calls to the library. For example, a client method might call in sequence open,
read, and close on a library that manipulates files. A corresponding framework client could
be forced to call similar methods in three different callback methods, causing validation of the
protocol to be more difficult. Finally, while libraries encode domain knowledge in objects, for
example a Date class that handles leap years, such encoding is more extensive in frameworks.

2.5 Current Best Practice
Client framework programmers are provided with a variety of types of information intended
to help them use a framework. This information includes: framework source code, general
framework documentation like books and courses, method- and class-level API documentation
like JavaDoc, targeted tutorials like HowTo articles, and example client programs. This variety
of resources exists because none is a perfect match for every client programmer’s problem.
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/**
* A listener which is notified when a viewer’s selection changes.

* @see ISelection

* @see ISelectionProvider

* @see SelectionChangedEvent

*/
public interface ISelectionChangedListener {

/**
* Notifies that the selection has changed.

* @param event event object describing the change

*/
public void selectionChanged(SelectionChangedEvent event);

}

Figure 2.2: JavaDoc for ISelectionChangedListener

2.5.1 Sources of Information on Frameworks
Framework source code is definitive in that it represents the implementation that the client pro-
grammer’s code will be interacting with. It can answer questions related to how the framework
works and, as a consequence, how the framework will interact with client code. This informa-
tion on interaction policy must be teased out of code that is full of other implementation details
that do not help answer the client programmer’s questions. There is also the danger that a client
programmer may accidentally come to depend upon private implementation details that could
change later.

The framework source code can be consulted in a “first principles” fashion by the client
programmer. It can be used to completely understand how the framework operates, which then
enables the client programmer to devise solutions compatible with it. In principle, the frame-
work source code can be used to verify that he has used the framework correctly but it requires
significant mental energy to do so. A programmer trying to understand a client program could
use the framework source code to gain understanding, but it provides no help in disentangling
code that is doing multiple things.

The framework source code is often not available, especially for commercial frameworks like
Microsoft .NET and Enterprise Java Beans, but in these cases the framework’s API documenta-
tion may be of higher quality to compensate.

API documentation is written by the framework authors and attempts to describe just the
callbacks and service methods of the framework, providing sufficient detail for client program-
mers to use the framework correctly, but omitting framework implementation details.

It is difficult to write high quality documentation for the traditional reasons, but additionally
so because it must describe not only the particular class or method, but also provide references to
other classes or methods that must be employed by the client programmer to arrive at a solution.
Using a framework usually entails coordinating many classes and interfaces from the framework,
and it is not obvious where in the API documentation such coordination information should live.

An example of documentation that fails to provide the needed coordination information is
shown in Figure 2.2, which is JavaDoc for an Eclipse framework interface. Following the links to
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the references (ISelection, ISelectionProvider, and SelectionChangedEvent)
yields similarly terse descriptions. It fails to inform the client programmer about the tradi-
tional use of the createPartControl callback method and the ViewPart superclass. It
is missing information about how to register for notifications with addSelectionChanged-
Listener. It is also missing the essential but non-obvious fact that when using a TreeView
it is safe to downcast the ISelection to an IStructuredSelection. Things are not al-
ways so difficult to deduce, however, and if the programmer were learning about resource change
events then the IResourceChangeListener JavaDoc shown in Figure 2.3 provides a much
better description of the bigger picture.

Even when the API documentation is well written there is the problem of whether or how to
describe canonical examples of usage. Use of a framework means employing many non-local
framework resources, so there is often no appropriate place to put the example. The documenta-
tion for these methods would be cluttered with many “if you want to do this, then ...” clauses, so
in practice it is not done. This problem is often less pronounced in libraries because they usually
do not require coordination of many classes and methods to accomplish a single goal. Even when
they do, there may be an obvious place to place the example.

Given this difficulty, API documentation is not an ideal answer for programmers seeking
to accomplish a goal with the framework. When the API documentation is complete, client
programmers can use it to decide if their code uses the framework correctly, but then they still
wonder if the API documentation is complete. Though tedious, they can also read the source
code and cross reference the API documentation to understand what client code does.

Books and courses are traditionally used to convey general principles or philosophy regard-
ing the framework. Generally, they cannot be searched using electronic means since, as they
say on the internet, “you cannot grep a dead tree”. Books and courses are quite useful at giving
the client programmer an understanding of what the framework can do, its architecture, and its
commonly employed patterns, thus priming him for more detailed information later such as API
documentation or HowTo articles.

Books, in particular, will have chapters that will directly help client programmers to accom-
plish their goals, but courses are less likely to do so. Both may provide a understanding of the
framework that can help in evaluating if client code is correct, but are unlikely to provide much
help at a line-by-line level of detail. Books may provide a big-picture understanding that guides
a programmer’s intuition and helps him infer what a client program does.

Targeted tutorials describe a specific goal and provide instructions on how to achieve it,
occasionally providing some discussion of context or points of variability. Where they exist, and
are updated, they are quite effective at instructing client programmers on how to use a particular
part of a framework. However, since tutorials are often found on the internet, and do not have the
quality control offered by a book editor, their quality is variable and may be outdated. Some tu-
torials may provide the client programmer with guidance on how to confirm that his code works
correctly, but others may not. Tutorials provide little help to programmers trying to understand
a client program. It is straightforward to cross-reference between source code and API docu-
mentation because API documentation is organized to facilitate it, but no similar means exist for
tutorials except using internet search engines.

Example client programs are known to work with the framework since the programmer can
compile them himself and watch them work. As such, they provide a source of known-good
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/**
* A resource change listener is notified of changes to resources

* in the workspace.

* These changes arise from direct manipulation of resources, or

* indirectly through resynchronization with the local file

* system.

*
* Clients may implement this interface.

*
* @see IResourceDelta

* @see IWorkspace#addResourceChangeListener(

* IResourceChangeListener, int)

*/
public interface IResourceChangeListener extends EventListener {

/**
* Notifies this listener that some resource changes are

* happening, or have already happened.

*
* The supplied event gives details. This event object (and the

* resource delta within it) is valid only for the duration of

* the invocation of this method.

*
* Note: This method is called by the platform; it is not

* intended to be called directly by clients.

*
* Note that during resource change event notification,

* further changes to resources may be disallowed.

*
* @param event the resource change event

* @see IResourceDelta

*/
public void resourceChanged(IResourceChangeEvent event);

}

Figure 2.3: JavaDoc for IResourceChangeListener
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Understand
non-local
client-
frame-
work
interac-
tions

Design
solutions
without
owning
the archi-
tecture

Gain con-
fidence of
compli-
ance

Represent
solutions

Encode
design
intent

Connect
with
external
files

Framework source code Maybe No No No No No
API documentation Maybe No No No No Maybe
Books and courses Yes Yes No Yes No Yes
Targeted tutorials Maybe Yes No Yes No Yes
Example client programs No Maybe No Yes No Maybe

Table 2.1: Helpfulness of information sources to overcome difficulties

examples. Sometimes simple internet searches will yield appropriate examples, but other times
the client programmer may know, for example, that he wants to receive events about Eclipse
framework file changes, but will have a hard time finding example code because a file is called a
“Resource,” and he must search for that keyword. Once he finds some example code, it may be
difficult to extract the essence of the interaction between client and framework, and consequently
he may copy too much or too little. And of course real code has real bugs, so he may copy those
as well. Despite these problems, copying examples from code has been promoted by leading
framework experts [22] as the best way to learn how to use a framework. The example code,
however, provides no assurance to the programmer that the code he has written is correct, nor
does it help him to understand a new client program.

2.5.2 Help in Overcoming Difficulties
The effectiveness of the information sources at helping client programmers with the six diffi-
culties is summarized in Table 2.1. Most help client programmers to translate their goals into
a plan for interaction with the framework, though they vary in how directly this information is
conveyed, and whether known-good examples or generalities are conveyed. These information
sources also vary in the time and place in which they are available. Some, like courses, are avail-
able days or months before the client programmer sits down to write a program. Others, like
books, are available when the program is being written but are printed on paper and do not afford
tool assistance. An ideal solution would address all six of the difficulties and be available to the
client programmer while the program is being developed and evolved.

2.6 Summary
Frameworks are a large-scale reuse mechanism, distinct from libraries in that they use inver-
sion of control. Client programs of frameworks must implement the callback methods that the
framework requires, and in turn require service methods from the framework.
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Frameworks are difficult for client programmers for a number of reasons. Interactions be-
tween the client and framework are forced to be non-local, so it is difficult to find all the interac-
tions and relate them. Since the framework owns the architecture, client programmers struggle
to find a solution that is within the framework’s constraints. Once they have written code, they
still have difficulty gaining confidence that the code conforms to the framework constraints. If
they have discovered a solution, they find it difficult to represent it so others can learn from it.
In their source code, they face difficulties encoding their design intent since standard techniques
like intention revealing method names and comments are hard to use. And modern frameworks
increasingly require them to coordinate their object-oriented code with external configuration
files in order for the client program to work correctly.

Existing sources of information about frameworks have enabled programmers to write client
programs but not without difficulty. An ideal solution would address all six of the difficulties and
be available to the client programmer while the program is being developed and evolved.
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Chapter 3

Thesis and Hypotheses

The preceding chapters have described some of the difficulties faced by client programmers when
using frameworks. This thesis proposes that an improved form of specification, called a design
fragment, can help overcome the difficulties. A design fragment specifies a single known-good
way to use a framework to accomplish a goal. Because design fragments are tool-readable,
analysis tools can check conformance between the client program and the design fragment. Fur-
thermore, we believe that design fragments can be used in real programming conditions.

3.1 Thesis
The thesis of this dissertation is:

We can provide pragmatic help for programmers to use frameworks by providing a
form of specification, called a design fragment, to describe how a client program
can correctly employ a framework, and by providing tools to assure conformance
between the client program and the design fragments.

While it is our desire to directly validate that design fragments provide “pragmatic help,” it is
challenging to demonstrate that claim, since a single objection could eliminate its pragmatism. It
is likely that only the voluntary, widespread use of design fragments by many client programmers
would represent irrefutable validation of pragmatic help. Since validation of that scope is not
possible in this dissertation, we have instead identified the largest concerns about the pragmatism
of design fragments, and have collected evidence to mitigate those concerns.

The first concern regards how well design fragments can be applied to real programming con-
ditions. This includes current programming languages like Java, actual frameworks, and client
programs that we find on the internet. We wish to eliminate the chance that design fragments
only work on toy examples.

The second concern regards the example-based nature of design fragments. We know that
frameworks can be quite large, and we also know that client programmers can be quite creative in
their solutions. So our concern was that the variety of examples of client-framework interaction,
and consequently the variety of design fragments, will be impractically large to enumerate.

The third concern regards our opportunity and ability to provide help through assurance tools.
It was not known what kinds of constraints would be present and if we could build analyses to
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check them.
To address these concerns, we have created three corresponding hypotheses, subordinate to

the main thesis. Since each hypothesis is smaller than the main thesis, each can be directly sup-
ported by evidence. Taken together, the three hypotheses bolster the case that design fragments
and assurance tools can provide pragmatic help.

We performed a case study using the rather small Applet framework. Its small size allowed us
to directly collect some metrics, like the final size of the design fragment catalog, that for a larger
framework would be too time consuming to perform during this dissertation. We have paired it
with a case study on the rather large Eclipse framework to ensure our findings are replicated at
larger scales.

In the following sections we state each hypothesis and summarize the evidence, presented in
the remainder of this document, that supports it.

3.2 Hypothesis: Real Conditions
To demonstrate that design fragments are pragmatic, we demonstrate their use on frameworks
and client programs that are used by real programmers. The first hypothesis is:

Design fragments can be used with existing large commercial frameworks, real pro-
gramming languages, and off-the-shelf code.

We support this hypothesis with the following evidence:

1. Catalogs of reusable design fragments for the Applet and Eclipse frameworks (Chapters
6 and 7). Both frameworks are implemented in the Java programming language, both are
commercial, and the Eclipse framework is very large.

2. Case studies of the Applet and Eclipse frameworks that include bindings between client
programs found on the internet and the design fragment catalogs (Chapters 6 and 7). The
client programs for the frameworks represent off-the-shelf code, not code written by re-
searchers or for the purpose of this dissertation.

3. An inventory showing that the design fragment language can express the observed client-
framework interactions (Chapter 4). Additionally, an empirical study demonstrating that
the constraints expressed in design fragment catalogs cover the majority of observed client-
framework interactions in a Java client program (Chapter 7).

This evidence shows design fragments to be practical in real conditions: Java frameworks and
client programs found on the internet. It also shows that the design fragments can specify the
client-framework interactions actually found in those client programs.

3.3 Hypothesis: Design Fragment Variety
A design fragment expresses a single known-good solution to accomplish a client programmer’s
goal in interacting with a framework. If there are many such solutions for each goal, then a
catalog of design fragments would be impractically large. However, if there are few such solu-
tions for each goal, then, as we survey client programs, we would expect to find fewer and fewer

24



new design fragments over time. The size of the design fragment catalog would be small, and
therefore pragmatic. The second hypothesis is:

The variety of design fragments to accomplish a given goal is limited, so a small
catalog of design fragments can have good coverage of the code seen in practice.

We support this hypothesis with the following evidence:

1. A case study of the Applet framework demonstrating the small size and asymptotic growth
of the design fragment catalog (Chapter 6). That is, with each new client program whose
interactions with the framework are encoded as design fragments, the chance is reduced of
needing new design fragments in the catalog.

2. A case study of the Eclipse framework demonstrating that client programs show low vari-
ety in the client-framework interactions (Chapter 7). While the size of the Eclipse frame-
work prevents us from creating a complete catalog, this measurement suggests that a com-
plete catalog would have similar asymptotic growth as the Applet catalog.

3. Evidence that programmers copy examples, which serves to reduce the variety of observed
client-framework interactions (Chapters 6 and 7).

This evidence shows that design fragments are practical because it is possible to create a small
catalog of design fragments that covers a framework. We created a catalog for the Applet frame-
work and showed it was small, and for the larger Eclipse framework we collected metrics that
suggest the final size of the catalog will be small.

3.4 Hypothesis: Assurance
Simply by collecting design fragments into a catalog we have provided programmers who are
designing client programs with knowledge about how to interact successfully with a framework.
Such knowledge is pragmatic help at design time but, with analysis tools that ensure confor-
mance, the aid provided by design fragments can continue through the evolution of the client
program, and even to other programmers. The third hypothesis is:

Analysis can provide programmers with assurance that their code conforms to the
constraints of the framework as expressed in design fragments.

We support this hypothesis with the following evidence:

1. An implementation of simple static analysis for conformance assurance (Chapter 5). These
analyses include required method call, required new instance, required class reference in
XML. These analyses are practical in that they run quickly enough to be used interactively
inside a modern integrated development environment.

2. A description of what percentage of design fragment constraints can be checked through
analysis (Chapter 5).

3. An empirical study that describes additional behavior specifications that should be possible
to check through analysis (Chapter 4).

This evidence shows that assurance tools can provide pragmatic help because we built some tools
to check some constraints, and there are opportunities for more constraint checking analyses.
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3.5 Integration
When turned into a simple question, the main thesis becomes “Can design fragments and as-
surance tools provide pragmatic help to client programmers?” All three hypotheses address the
“pragmatic help” part of the thesis, each either demonstrating a particular way that help is pro-
vided, or by mitigating a concern about the pragmatism of the provided help.

Our intent with a broad thesis statement is to push our research to devise a realistic and
practical solution to the challenges faced by client framework programmers, knowing that the
validation of such a thesis could not be complete. These three hypotheses taken together do not
remove all concerns about whether design fragments and assurance tools can provide pragmatic
help. We discuss the relationship between the hypotheses and the main thesis in detail in Section
9.1. However, the validation of each hypothesis provides valuable knowledge on its own, and
the sum of the hypotheses substantially supports the conclusion that design fragments provide
pragmatic help.

The next several chapters of this document provide the evidence that supports the hypotheses
presented above. Chapter 4 describes the design fragment language. Chapter 5 describes the
assurance tooling that plugs into the Eclipse integrated development environment. Chapters 6,
and 7 describe case studies on Applet and Eclipse frameworks.
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Chapter 4

Design Fragments

Previous chapters have explained the problems that client programmers face when using frame-
works, motivating the need to provide help. In this chapter we present the design fragment
language, a language which can express ways for a client program to successfully use a frame-
work to accomplish a goal. Design fragments can be bound to the client program, which captures
design intent and enables conformance assurance. We also discuss how design fragments can be
used in the software lifecycle, and the benefits they provide.

4.1 What a Design Fragment Is

A design fragment is a specification of how a client program can use framework resources to
accomplish a goal. From the framework, it identifies the minimal set of classes, interfaces,
and methods that should be employed. For the client program, it specifies the client-framework
interactions that must be implemented. The structure of the client program is specified as roles,
where the roles can be filled by an actual client program’s classes, fields, and methods. A design
fragment exists separately from client programs, and can be bound to the client program via
annotations in their source code. These annotations express design intent, specifically that it is
the intention of the client programs to interact with the framework as specified by the design
fragment.

Design fragments are partial specifications, and do not attempt to fully specify either the
framework or the client program. They rely on the existence of framework API documentation
and the competence of client programmers. As partial specifications, their value lies in their
identification of the required framework resources and their description of how the client pro-
gram can use them to accomplish a goal. Without design fragments, finding a solution can be
difficult and error-prone, but once the needed resources and solution have been identified, client
programmers can accomplish their goal using their existing programming skills.

To provide assurance that client programs conform to the specification, design fragments are
machine-readable. The bindings between design fragments and client programs preserve the
intentional connections between non-local parts of the client program, enabling analysis tools to
check conformance both immediately and as the program evolves.

A design fragment provides a programmer with a “smart flashlight” to help him understand
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the framework. This smart flashlight illuminates only those parts of the framework he needs to
understand to accomplish his goal. Without the smart flashlight, a programmer browsing the
framework classes can be swamped with implementation details or unable to differentiate the
relevant from irrelevant. Even simple parts of a framework have enormous complexity [34]. In
the Java Swing user interface framework, the JButton class has 160 methods and fields, while
JTree has 336. A design fragment provides a programmer with a mapping from a goal to a
handful of framework resources, focusing his attention on what is relevant.

Each design fragment describes how a client programmer can accomplish a goal, and this
goal is usually a simple task. There are two special sub-types of design fragments with special
goals. The first is a design fragment whose goal is to facilitate event bookkeeping. Client pro-
grammers may have difficulty understanding which events the framework can emit, and further
difficulty knowing when to register and deregister for those events. This type of design fragment
connects the two by identifying both a framework event and the lifecycle callback methods where
registration and deregistration are conventionally done. Such a design fragment is additionally
helpful because event deregistration is easy to forget, non-local in the source code, and can be
hard to find during testing.

The second sub-type of design fragment helps a programmer to work around conflicting
constraints. Sometimes a goal becomes difficult to achieve only because of constraints imposed
by the framework, since the client programmer is able to easily solve the problem if this were a
standalone program. One example of this is in the Applet framework where client programmers
are forced to use threads to update their display; another example is in the Enterprise Java Beans
framework where client programmers are forced to create an external clock program that emits
periodic events because EJB’s cannot act spontaneously. The client programmer must understand
the constraints of his domain, and the constraints of the framework, then find a solution within
the intersection, a solution that is unconventional in one or both of the domains. Here, design
fragments are valuable since the programmer’s existing intuition on how to solve problems may
not quickly guide him to a solution.

4.2 Contents of a Design Fragment
A design fragment is a specification that expresses a conventional solution to how a client pro-
gram interacts with a framework to accomplish a goal. It has the following four parts:

1. The name of the design fragment.

2. The goal of a client programmer that is accomplished by this design fragment.

3. A description of the relevant parts of the framework that interact directly with the program-
mer’s code, including the callback methods that will be invoked, the service methods that
are provided, and other framework classes that are used.

4. A description of what the programmer must do to accomplish the goal of this design frag-
ment, including the classes, methods, and fields that must be present. This description also
includes the behavior of the methods.

In this section, we describe the design fragment language. We begin with how the language
expresses object-oriented structure, proceed to the expression of external configuration files, and
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conclude with the expression of other constraints.

4.2.1 Object-Oriented Language

Object-oriented frameworks are built in object-oriented languages, so it is important to express
that structure, including classes, interfaces, fields, and methods. The design fragment has sepa-
rate sections for the parts of the framework and the parts of the client program, which we refer
to as “framework provided” and “programmer responsibility.” In both sections, the specification
simply declares that a class, interface, field, or method exists. Relationships between classes and
interfaces are expressed with the implementsinterface and superclass declarations. Inheritance
and interfaces in a design fragment work the same way as they do in Java, which means single
inheritance for classes and multiple implementations of interfaces.

By way of example, Figure 4.1 shows the structure for the Background Continuous V1 de-
sign fragment. The horizontal bar in the diagram separates the framework provided classes from
the ones that must be built by the programmer. Note that only the relevant subset of framework
classes, interfaces, and methods are shown. A design fragment should not reveal implementation
details of the framework, even if client programs have visibility to them because of their privi-
leged subclass relationship. Consequently, we say that a design fragment respects the encapsula-
tion boundary between the framework and the client program, describing only those framework
resources the client program needs to reference to do its job.

The classes and methods in the programmer responsibility section are roles in the design
fragment, and can be bound to the programmer’s classes, as we describe in section 4.3.

Entire design fragments can be marked as deprecated. Such a facility would be helpful when
a bug is found in the design fragment, since it would enable clients to know that using that design
fragment is not recommended. Our example design fragment, Background Continuous V1, is in
fact a deprecated design fragment that has been replaced by V2, which has fixed a threading bug.

Figure 4.1: UML structure of Background Continuous V1 design fragment

Figure 4.2 shows the abstract syntax of the object-oriented parts of the design fragment lan-
guage, and substantially follow the Extended Backus-Naur Form (EBNF) [20]. To make the
definitions representing unstructured text more readable, we have shown them in italics. We will
subsequently add in the parts for external configuration files and specifications. The parts shown
in bold are forward references and are defined in Figures 4.3 and 4.5.
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design-fragment = name-text , goal-text , [ is-deprecated ] ,
framework-provided , programmer-required ;

is-deprecated = “yes” | “no” ;
framework-provided = { type } ;
programmer-required = { type } , [ { xml-file } ] ;
type = class | interface ;
class = name , [ superclass ] , [ implements-interface ] ,

[ { field } ] , [ { method } ] , [ { class-spec } ] ;
interface = name , [ superclass ] , [ { field } ] , [ { method } ] ;
superclass = name ;
implements-interface = name ;
field = name , field-type-text , [ { field-spec } ] ;
method = name , return-type-text , [ { argument } ] ,

[ is-abstract ] , [ source-code ] , [ { method-spec } ] ;
argument = name , argument-type-text ;
is-abstract = “yes” | “no” ;

Figure 4.2: Abstract syntax of the core design fragment language

The design fragment language’s concrete syntax is XML, which was chosen because it is
standardized and familiar to client programmers. We have defined a full XML schema defini-
tion [27] for the language in Appendix B. The concrete syntax closely follows the abstract syntax,
as is shown in this short excerpt that shows the RoleThread class from our Applet example:

<class name="RoleThread">
<implementsinterface name="java.lang.Runnable" />
<method name="run" returnvalue="void" />

</class>

4.2.2 Configuration File Language
While the earliest frameworks were written entirely in a programming language, modern frame-
works are increasingly combining a programming language (such as Java) with an external
declarative configuration file (often XML1). Examples of such frameworks are Eclipse, Enter-
prise Java Beans, and Struts. The configuration file is often used to specify architectural con-
nections or to enable extension of the framework after its source code has been compiled and
deployed. Elements of the source code, such as class names, must correspond to declarative
statements found in the XML configuration file or else the source code will be ignored by the
framework and fail to extend it as desired. Inaccuracies in a framework’s configuration file can
prevent a program from working, and so are no less serious than bugs in the source code.

The design fragments language can specify the required structure of an external XML con-
figuration file. Figure 4.3 describes the abstract syntax, where the bolded part is again a forward
reference to the specifications that will be defined in Figure 4.5. As you can see, xml-file

1To be clear, the design fragment source files are themselves also expressed in XML. But here we are discussing
how the design fragment language can refer to XML configuration files from a framework.
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contains a single xml-node, and xml-node is recursively defined to allow for a tree of
xml-nodes. Roles can be specified in the design fragment, which requires that programmers
who bind this design fragment must also bind this XML role.

xml-file = name , xml-node ;
xml-node = name , [ { xml-node} ] , [ xml-role-name-text ] ,

[ { xml-spec } ] ;

Figure 4.3: Abstract syntax of the XML design fragment language

As an example, Figure 4.4 shows an excerpt from a design fragment that describes the
plugin.xml file from the Eclipse framework. The entire excerpt is an xml-file, within
which the name of the configuration file is specified, and the required parts of the configu-
ration file are shown as contents. We have followed the convention that anything that is
present in the design fragment must be found in the configuration file, but the configuration file
may contain more items not mentioned in the design fragment. So, since an XML node named
propertyTab with an attribute category equal to acmeelements is mentioned in the
design fragment, it must also be present in the plugin.xml configuration file.

Not all of the nodes are equally interesting to us from a specification standpoint. We assign
role names to the ones that we refer to elsewhere, as seen in the <df:role name="Role-
PropertyTab" /> node in our example. This specification means that the propertyTab
XML node is assigned to the role named RolePropertyTab. In order to keep the syntax of
references simple, the design fragment language only allows us to refer to role names, not to
an arbitrary XML node. This example also demonstrates the use of an XML string matching
specification, which we will return to in the next section, which describes the specifications.

Since we can refer to roles in Java code and in XML files, we can write specifications that
refer to either the Java or the XML or both, as we discuss next.

4.2.3 Specification Language
Of course not all constraints can be expressed through a simple description of the structure, like
the UML structure we saw in Figure 4.1. In that example, it is necessary to specify the threading
behavior of the Applet and coordinate it with the framework callback methods. The behavior
that the design fragment should specify is that in the start callback, the code should create a
new RoleThread instance and assign it to the roleThread field in the RoleApplet. In
the stop callback, the code should set the roleThread field to null. We use the null field as
a signal to the thread that it should terminate. Then, in the run callback, the code should loop
repeatedly while checking that the roleThread field has not been set to null.

Most of this behavior can be expressed in the design fragments language. The required
creation of a new instance is expressed like this:

requirednewinstance target="java.lang.thread.Thread" arguments=""

A required method call is expressed like this:
requiredcallspec targetobject="roleThread" targetmethod="start"

arguments=""
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<xmlfile>
<name>plugin.xml</name>
<contents>
<plugin>
<extension point="propertyTabs">
<propertyTabs contributorId="MultiPageEditor">
<propertyTab category="acmeelements">

<df:role name="RolePropertyTab" />
</propertyTab>

</propertyTabs>
</extension>
<extension point="propertySections">
<propertySections contributorId="MultiPageEditor">
<propertySection>

<df:role name="RolePropertySection" />
<df:match reason="Matches our RolePropertyTab"

p1="xpath://RolePropertySection@tab"
p2="xpath://RolePropertyTab@id" />

</propertyTab>
</propertyTabs>

</extension>
</plugin>

</contents>
</xmlfile>

Figure 4.4: Design fragment with XML specifications

32



Additionally, freeform text can also be entered as a specification:

freeformspec text="By the end of this method, a new thread must
be running and assigned to the roleThread field"

However, note that the looping behavior required in run cannot be expressed in the current
design fragments language except as freeform text. Here we see the specification for the start
method with the specifications in bold:

<method>
<name>start</name>
<returnvalue>void</returnvalue>
<requirednewinstance target="java.lang.Thread" arguments="" />
<requiredcallspec targetobject="roleThread" targetmethod="start"

arguments=""/>
<freeformspec text="By the end of this method, a new thread must

be running and assigned to the roleThread field" />
</method>

The above example shows how we can specify the required behavior of the client program, but
the client programmer also needs to know how the framework will behave. We can also put
specifications on the framework classes that describe their behavior. Some framework methods
are callbacks, while others are service methods. Some callback methods follow the lifecycle
of the object, while others represent spontaneously generated events. In the case of the Applet
example, the programmer would want to know that the start framework method is a callback,
it can be called multiple times, it is a lifecycle callback, and it is invoked in pairs with the stop
callback method. These framework specifications are purely descriptive, unlike the prescriptive
specifications for the client program, so they would not be checked by analysis tools. We can
document this framework behavior by providing the following specification for the Applet
class:

<class name="java.applet.Applet">
<method name="start" returnvalue="void">

<freeformspec text="Callback method; invoked when framework
decides to initialize your applet." />

<freeformspec text="invocation-cardinality ’*’ " />
<freeformspec text="invocation-lifecycle ’yes’ " />
<freeformspec text="invocation-type ’callback’ " />
<freeformspec text="invocation-pair ’stop’ " />
<freeformspec text="invoked-before ’stop’ " />

</method>
...
</class>

Figure 4.5 describes the abstract syntax for the specifications that we have defined. There are
four types of specifications, corresponding to classes, fields, methods, and XML files. Each
specification, such as a required call specification, is an instance of one of these four types. While
it is possible within our language to define specifications for fields, we have not yet created one.

33



class-spec = class-referenced-in-xml-spec ;
class-referenced-in-xml-spec = xml-role-name ,

attribute-name-text ;
field-spec = ; (* no field specs pre-defined *)
method-spec = freeform-spec | required-call-spec |

required-new-instance-spec ;
freeform-spec = specification-text ;
required-call-spec = target-class-name ,

target-method-name , arguments , purpose ;
required-new-instance-spec = target-class-name ,

arguments , purpose ;
xml-spec = string-match-spec | attribute-exists-spec ;
string-match-spec = specification-purpose ,

xpath-predicate-1 , xpath-predicate-2 ;
attribute-exists-spec = attribute-name ;

Figure 4.5: Abstract syntax of design fragment specifications

Returning to the example from Figure 4.4, we can see a the use of an XML string match
specification. We need the specification because the example declares both a tab and a sec-
tion that goes on that tab. The programmer must declare that the section corresponds to the
tab by giving the tab an ID, and referencing that ID when declaring the section. We specify
this constraint with the <df:match ... /> specification in our example. The specification
says that the RolePropertySection has an attribute called tab, and that it must equal the
RolePropertyTab’s attribute called id. The programmer must also show the correspon-
dence between the tab and section declared in the XML file and the Java classes that implement
them. This is done by putting the name of the Java class in the XML file. We can specify this
correspondence with the class referenced in XML spec, like this:

<class-referenced-in-xml xmlrolename="RolePropertySection" at-
tributename="class" />

Table 4.1 summarizes the specifications in the current version of the design fragment language.
It lists the two behavioral specifications, Required New Instance and Required Method Call, the
structural specifications, and the Freeform Text specification. The column titled “Structured”
indicates if the specification has internal structure defined in the XML; this structure is defined
in the detailed description of the specifications, below. It is structure like this that makes the
specifications parsable and analyzable by tools. The column titled “Checked” indicates if an
implementation exists to check that specification.

The specifications and analysis implementations are described in more detail below. All of
the specifications apply to methods in a design fragment, with the exception of the Class in XML
Extension Point, which applies to a class.

Required new instance. This specification means that within this method the source code
should create a new instance of the specified class/interface, or one of its subclasses. This spec-
ification is structured and has the following attributes: target (required), the class of the new
instance; arguments (required), the arguments to the method; purpose (optional), a string describ-
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Specification Structured Checked
Behavior specifications
Required new instance Yes Yes
Required method call Yes Yes

Structural specifications
Class in XML Yes Yes
String match in XML Yes No
XML element has attribute Yes No
Other structure specifications Yes No

Freeform text No No

Table 4.1: Specifications, checked and unchecked

ing the purpose within the design fragment for creating an instance; text (optional), a freeform
string for any comments.

The implementation of this analysis is imprecise in that it does not check which constructor
is invoked on the target class. Ideally the semantics of this specification would cover cases where
the new instance is created in a subroutine, but this is not implemented. Our current convention
is to use the unstructured text attribute to identify what field or role this new instance is stored in,
but this informality limits our analysis.

Required method call. This specification means that within this method the source code
should call the specified method on an instance of the specified class. This specification is struc-
tured and has the following attributes: targetobject (required), the class/interface of the object
or role on which the target method is called; targetmethod (required), the method on the target
object that is called; arguments (required), the parameters passed to the target method; purpose
(optional), a string describing the purpose within the design fragment for calling the method; text
(optional), a freeform string for any comments.

The implementation of this analysis is imprecise in that it only checks that a method with the
same name as targetmethod is called, not that it has the same arguments or is on the right type of
object. This has the effect that it will incorrectly accept, for example, open called on a File
when the specification is to call open on a Socket. Despite this, in our experience almost all
errors are ones of omission, not ones where a method with the same name is invoked on the wrong
target, so this limitation on the implementation is of little consequence in detecting problems.
A much greater inconvenience is the previously mentioned restriction that the semantics of this
method should cover cases where the method call happens in a subroutine, as a simple refactoring
of the source code can cause this specification to fail.

Class in XML. This specification means that this class must be referenced in the specified
external configuration file as the specified attribute name. For programs that use the Eclipse
framework, and many other modern frameworks, the deployed framework consists of both Java
source code as well as external configuration files used in configuring the program. In the case
of Eclipse, a program can extend the framework by writing Java code that implements the exten-
sion and binding that code through a declarative statement in a file called plugin.xml. This
specification is helpful to client programmers since the traditional in-Java type checking cannot
detect a missing declaration in the plugin.xml; instead the program will fail silently.
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This specification is structured and has the following attributes: xmlrolename (required), the
rolename found in the plugin.xml file; attributename (required), the name of the attribute in
the specified xmlrolename where this class’s name must be found. In the same way that program-
mers add bindings to Java files to bind their design fragments, they can also add bindings to XML
files – this is the xmlrolename that must be found in the plugin.xml file. The implementation of
this structural analysis is straightforward and has no known limitations.

String match XML. This specification means that within an XML file the two specified
strings must match. The two strings are specified as XPath expressions (pointers into XML files)
or constants. Design fragments can use this specification either to coordinate different parts of
the same XML file to be consistent or to ensure that particular parts of the XML file have a
particular constant value. This specification is structured and has the following attributes: rea-
son (required), a string that explains why the design fragment believes these two strings should
match; p1 and p2 (required), XPath expressions that point into the XML file and resolve into
strings, or a constant. This specification was implemented and working but evolution of the tool
has rendered it inoperable for now.

XML element has attribute. This specification means that an XML node must have the
specified attribute, regardless of that attribute’s value. Design fragments can use this specification
to ensure that required attributes are present in XML files. This specification is structured and
has the following attributes: name (required), the name of the attribute that must exist. This
specification has no implementation yet.

Freeform text. This specification allows a design fragment author to write a freeform textual
specification. A report on the kinds of constraints informally encoded with this specification is
presented in Section 9.2.3.

4.3 Design Fragments and Client Programs
Design fragments exist separately from source code. They are an abstract expression of how a
client program can interact with a framework. They can be connected with a particular client
program by declaring an instance of the design fragment and binding that instance to the client
program. In doing this, the client programmer expresses the design intent that the client program
interacts with the framework in accordance with the design fragment’s specification.

When a programmer wants to use a design fragment, he declares it using a Java 5 annota-
tion [25] in the source code of the client program. Java 5’s annotations are a standard mechanism
in the Java language and the annotations can be typechecked using the Java 5, or subsequent,
compiler. A new instance of a design fragment is created through through the @df.instance an-
notation, providing a reference to the design fragment name, and giving this instance a unique
name. For example:

@df.instance(df="TreeView", inst="tv1")

If the program uses the design fragment twice, there would be two such annotations, each with
a different instance name, but both referring to the same TreeView design fragment. Design
fragment instance declarations are placed in the special Java file package-info.java to
share them across the whole Java package, rather than in any of the files corresponding to Java
classes.
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Once a design fragment instance has been declared and named, its roles can be bound to
the corresponding classes, fields, and method in the client program. These bindings are also
expressed as Java 5 annotations. Here we see bindings from the tv1 instance’s RoleView,
roleViewer, and createPartControl roles to the corresponding class, field, and method
in the source code:

@df.bindings({
@df.binding(inst="tv1", role="RoleView")

}) public class SampleView extends ViewPart {

@df.bindings({
@df.binding(inst="tv1", role="roleViewer"),

}) private TreeViewer viewer;

@df.bindings({
@df.binding(inst="tv1", role="createPartControl"),

}) public void createPartControl(Composite parent) {
...

These bindings declare the programmer’s intent that the roles in the TreeView design fragment
are to be played by the classes, fields, and methods that he identifies with annotations.

Bindings in an external configuration file are made in a similar way to the bindings in Java
source code. However, since XML does not have Java 5 annotations, we have used XML com-
ments, which begin with <!-- and end with -->. An example of an XML binding is:

<!-- @dfbinding inst="tv1" role="RolePropertyTab" -->

With a binding, the programmer is stating that a particular XML node corresponds to a role
defined in the design fragment. Since XML has a hierarchical structure, the role binding is
positioned as a child of the particular XML node.

A class, field, method, or XML node in a client program or configuration file may exist
to satisfy more than one goal of the programmer. This condition is known as tangling of con-
cerns [64] because, when a programmer tries to evolve the code, he finds that he must disentangle
the client-framework interactions that exist. Similarly, the code that implements a single goal of
a programmer may be scattered across many classes, fields, and methods. Design fragment an-
notations help to make tangling and scattering visible to programmers. When, for example, a
class plays a role in more than one design fragment, the class will have more than one binding.
Similarly, following the role bindings for a single design fragment may lead the programmer to
many classes.

Each framework will have its own catalog of design fragments that act like a handbook,
collecting conventional solutions to problems. Programmers can see examples of the design
fragment in use by navigating from the catalog to the code that implements a given design frag-
ment.

Authors collect their design fragments into catalogs for ease of management. A catalog
contains design fragments for a particular framework or version of a framework. Catalogs can
also be categorized, for example by how stable the design fragments are. We have catalogs for
stable, testing, and unstable design fragments for the current version of the Eclipse framework. A
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@df.instances({
@df.instance(df="TreeView", inst="treeview1"),
@df.instance(df="ContentProvider", inst="contentprovider1"),
@df.instance(df="DoubleClickAction", inst="doubleclickaction1"),
@df.instance(df="DrilldownAdapter", inst="drilldownadapter1"),
@df.instance(df="LabelProvider", inst="labelprovider1"),
@df.instance(df="RightClickMenu", inst="rightclickmenu1"),
@df.instance(df="ToolbarMenuAction", inst="toolbaraction1"),
@df.instance(df="ToolbarMenuAction", inst="toolbaraction2"),
@df.instance(df="PulldownMenuAction", inst="pulldownaction1"),
@df.instance(df="PulldownMenuAction", inst="pulldownaction2"),
@df.instance(df="ViewerSorter", inst="viewersorter1"),
@df.instance(df="SharedImage", inst="sharedimage1"),
@df.instance(df="SharedActionImage", inst="sharedactionimage1"),
@df.instance(df="SharedActionImage", inst="sharedactionimage2")

})
package eclipseTreeView.views;

Figure 4.6: Instance declarations reveal architectural understanding

client programmer can specify which catalog they prefer when instantiating the design fragment,
like so:

@df.instance(df="TreeView", inst="tv1", branch="unstable")

Programmers with low tolerance for risk would choose the stable catalog, but those involved
with the development of new design fragments could specify a newer, less tested version from
the testing or unstable catalogs.

It is possible to understand how a client program interacts with a framework by reading its
declarations of design fragment instances. This kind of architectural understanding is usually
difficult to extract because the framework owns the architecture, and the client-framework in-
teractions are not localized within the client program. Figure 4.6 shows the design fragment
instance declarations on an Eclipse client program. A programmer who scans this list of design
fragments used will be rewarded with a high-level understanding of how this program interacts
with the Eclipse framework. In fact, because there are two uses of the ToolbarMenuAction de-
sign fragment, we would correctly guess that this menu has two items. In a way, this transparency
of the design intent is very similar to the transparency seen in programs that use libraries.

4.4 Expressiveness
The core of the design fragment language allows the expression of a predefined set of structural
constraints as predicates. The structural constraints correspond directly to what can be expressed
in object-oriented languages, constraints such as the existence of classes, interfaces, fields, and
methods; and features of them, such as deriving from a particular superclass, or implementing
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Framework Interaction Type Expressed by DF Language
Method invocation Yes
Overrides method Yes
New instance Yes
Static class reference Yes (Undifferentiated)
Static field access Yes (Undifferentiated)
Extends superclass Yes
Implements interface Yes
Static method invocation Yes (Undifferentiated)
Field holding framework object Yes

Table 4.2: Expressiveness of design fragment language

an interface. Mainstream, commercial object-oriented programming languages like Java and C#
are very close in their core elements, so the expressiveness of the core language may apply to
languages other than Java.

In addition to expressing the core of object-oriented languages, we needed the design frag-
ment language to express client-framework interactions. To do this, we performed a detailed syn-
tactic examination of an Eclipse client program, and identified nine client-framework interaction
types. This program and our process are described in Chapter 7. Table 4.2 lists the framework
interaction types and shows that all of them can be expressed in the design fragment language.
The three interaction types specific to static classes, fields, and methods are listed as “undifferen-
tiated” in that the design fragment language does not distinguish static from non-static access. As
will be discussed in detail in Section 7.4.1, each of these interaction types has the characteristic
that it can be identified through simple syntactic examination of a client program.

As we discuss in Section 9.2.6, there are a number of areas where the design fragment lan-
guage could be improved to increase expressiveness.

4.5 Using Design Fragments
In an effort to reduce the barrier to using design fragments, we have deliberately kept the lan-
guage simple. As a consequence, client programmers should be able to quickly comprehend the
first design fragment they see.

No large upfront investment is required to use design fragments. A client programmer can
bind a single design fragment to a client program, yielding benefits for that client-framework
interaction. The benefit grows linearly with the number of bound design fragments. As we
will see in Section 7.4, our case study shows that a majority of client-framework interactions
can be described with a fully populated catalog of design fragments. The benefits of design
fragments follow a gentle slope with programmer effort, and provide immediate benefit with
each investment of effort.

The simple design fragment language should encourage many design fragment users to be-
come authors. An author would first identify the required framework resources, then describe
what roles the client program must implement. The name and goal of the design fragment are
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unstructured text, so they should be easy to write. Providing specifications is only slightly more
complicated, since they can start out as freeformspecs, which are also unstructured text.

To add more precision, the unstructured specifications can be transformed into structured
ones, either using our provided set of specifications, or by creating a new kind of specification.
Defining a structured specification without automated checking allows the work of creating a
checking tool to be deferred, while capturing precise design intent today. The final step would
be to create the checking tool, whose implementation could be improved over time.

As with the use of design fragments, the benefits of authoring design fragments follow a gen-
tle slope with author effort. The benefits jump in value with transitions from a design fragment
with unstructured specifications, to one with structured specifications, and then checked speci-
fications. Appendix A walks through the process of adding a new specification to the language
and tools.

4.6 Design Fragments in the Software Lifecycle
Design fragments will be applied at various times in the software lifecycle. The following narra-
tive serves to describe the contributions that occur. Our client programmer, Pat, wants to create
a menu in her client Eclipse program. She scans the catalog of design fragments for the Eclipse
framework and finds Toolbar Menu Action, whose goal is stated as “Add an action to a toolbar
menu.” She binds this design fragment to her code, creating the necessary methods and imple-
menting the necessary interfaces. Once she finished the binding, the analysis tools warn her that
the code does not yet make the needed method calls to the framework and so she implements
these, which makes the tool warnings go away. She further verifies that the textual specifications
in the design fragment have been satisfied since the tools cannot yet check all the constraints
imposed by the framework.

Mary, another programmer, later maintains the same code and sees the design fragment bind-
ings in the code. She sees that the tool is happy with the checkable constraints. She navigates
from the code to the design fragment catalog, where she can see this use of the Toolbar Menu
Action design fragment as well as all the others. She also sees that Pat’s code implements other
design fragments and gets a big-picture overview of how Pat’s code interacts with the framework.

Janice, the author of the Toolbar Menu Action design fragment, finds that it fails to handle
a special case of one of the framework parameters. She updates the design fragment definition,
meaning that some of the uses of this design fragment will now report warnings.

When Mary next looks at the code she sees that the code now has a warning. She reads the
warning and any other text that Janice put in the design fragment and changes the code so that
it is again in conformance. The code had originally passed testing but the testing had not caught
this bug so she is thankful that the strengthening of the design fragment has helped her increase
the code quality.

Art, the author of analysis tools for design fragments, puts the finishing touches on his new
constraint analyzer. Previously, design fragment authors had put specifications into the code that
could not be checked by tools and so client programmers were expected to check them manually.
Even when the programmers did check these constraints, the code sometimes wandered out of
compliance through evolution. Art’s new analysis tool is able to check these constraints. Since
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many existing programs already contain enduring design intent, specifically that they implement
the Toolbar Menu Action design fragment, these programs now show new warnings of non-
compliance that are investigated and fixed by their programmers.

4.7 Benefits
Design fragments provide two immediate benefits to programmers. First, programmers can
quickly scan a catalog of design fragments to find known-good solutions to their problems.
Second, analysis tools can check conformance between the programmer’s stated intent and his
source code. This conformance checking provides programmers with immediate value for their
investment of effort.

Once programmers have started using design fragments, long-term benefits arise. Since pro-
grammers have expressed their intent, such as this code follows the Toolbar Menu Action design
fragment, it becomes possible to analyze the code with respect to that intent. Even if analysis
tools are not available at the time the code is written, the expression of intent endures and can be
checked by stronger tools available tomorrow. For example, our current tools cannot check for
concurrency bugs today, but, in the future, static analysis tools from the Fluid project [26] could
assure correct threading behavior.

The use of design fragments allows other programmers to comprehend the code more quickly.
At a glance it is possible to see what design fragments a program is using. Design fragments
convey architectural information that is complimentary to an Acme [24] architecture model.

Evolution of code is improved. With copy-and-paste reuse of example code, it is a mainte-
nance burden to find and revise all of the copies when a bug is found in the original. A design
fragment can be marked as deprecated, causing programmers to examine their code and fix the
bug. Note that in the example there is no single method or class that can be deprecated, only the
collection of methods and classes that are used in a particular way.

Unnecessary code diversity can be reduced. Instead of a goal being accomplished slightly
differently by various programmers on the same team, they could standardize on a particular
design fragment. This yields benefits in code comprehension, and may reduce bugs. Frame-
work authors could deliver both example applications, as they do now, as well as a catalog of
design fragments. The design fragments could act as seed crystals so programmers would use
the conventional solution unless they had a good reason to deviate.

4.8 Summary
A design fragment is a pattern that encodes a conventional solution to how a program interacts
with a framework to accomplish a goal. It has four parts: a name, a goal, a description of what the
programmer must do, and a description of the relevant parts of the framework. Design fragments
describe both structure and behavior. External XML configuration files can also be specified.

When a programmer wishes to use a design fragment, he declares a new instance of one,
providing that instance a name. He then binds each role in the design fragment to the corre-
sponding part of his program. Each binding provides the name of the design fragment instance,
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the name of the role in the design fragment, and the part of the program to be bound. Bindings
in source code are expressed as Java 5 annotations, and bindings in external configuration files
are expressed using XML comments.

The design fragment language comes with several specifications that can be placed on meth-
ods, classes, and XML nodes. Informal specifications can be written in natural language. New
specifications and specification checkers can be added by design fragment authors. Specifica-
tions can be written today that express design intent, allowing the possibility of future checkers
to provide assurance.
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Chapter 5

Tools

We built new tools into an integrated development environment to demonstrate how design frag-
ments can provide help to client programmers. These tools manipulate design fragments, connect
them with the source code, and check conformance. Five tools are user interface views that are
visible to programmers: the Catalog View, the Instances View, the Problems View, the Context
View, and the Slice View. Analysis tools check compliance between source code and the design
fragments, but are invisible to the user except for their output that appears in the views.

The tools are built into the Java Development Tooling for the Eclipse integrated development
environment (IDE) [12]. Programmers working in the Eclipse IDE can use the design fragment
tools in a style that is consistent with the incremental compilation tools already present in the
IDE.

In this chapter, we describe each of these views in detail and describe how they can be used to
overcome the difficulties with frameworks we have identified. Before going into detail, however,
we provide an overview of the tools in context. The full IDE screenshot in Figure 5.1 shows how
a programmer might configure the views inside the Eclipse IDE.

In the top left, labeled (1), is the Catalog View. It has been opened to reveal the Right Click
Menu design fragment. Below it, labeled (2), is the Instances view. It shows the instance of
the Right Click Menu named rightclickmenu1, and the checkmark next to the specification
indicates that it has been analyzed and found to be satisfied. The rightclickmenu1 instance
is declared in the package-info.java file shown in the Eclipse editor, labeled (3) in the
figure. Another Eclipse editor is labeled (4) and displays the contents of the createPart-
Control callback method. One of the lines in this method has been commented out, resulting
in the warning shown above it on the binding for the Drill Down Adapter design fragment.
The same warning also appears in the Context View, labeled (5) and in the Eclipse Problems
View. Since the programmer’s cursor is in the createPartControl method, the Context
View displays all of the specifications for that method, and the design fragment instances that
contribute those specifications. On the right, labeled (6) is the Slice View. It shows the relevant
source code for the Right Click Menu design fragment instance named rightclickmenu1,
since that instance has been selected by the programmer in the Instances View.

These tools help client programmers to overcome the difficulties of using frameworks. The
difficulties we identified in Chapter 2 are: understanding non-local client-framework interac-
tions, designing solutions without owning the architecture, gaining confidence of compliance,
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Figure 5.2: Catalog View

representing solutions, encoding design intent, and connecting with external files. Each of these
difficulties is addressed in the following sections, with a description of how the tools help over-
come the difficulty. We conclude with a set of use cases that the tool supports, organized around
the software development lifecycle.

5.1 Understand Non-Local Client-Framework Interactions

Accomplishing a single goal usually requires the coordination of many client-framework inter-
actions, such as calls to framework service methods, overriding of framework callback methods,
and creation of new objects derived from framework classes. These client-framework interac-
tions cannot be co-located in the source code, which causes difficulty for client programmers
both when creating new source code and when evolving existing source code.

A client programmer creating new source code may have a clear idea what he wants to do,
which we call his goal, but may not know how to accomplish it. Design fragments represent
known-good ways to accomplish goals, so they help the client programmer by providing a means
to move from goal to solution. The design fragment tools present a catalog of design fragments
in the Catalog View.

Figure 5.2 shows the design fragments Catalog View, showing design fragments for the Java
applets framework. The Background Continuous Task V1 design fragment has been opened,
showing the text of its goal, the parts provided by the framework, and the parts the program-
mer must build. The definition of the run() callback method has been opened, showing the
specifications of when and how often this callback will be invoked by the framework.

The section on programmer responsibility shows the two class roles, RoleApplet and Ro-
leThread. The class role RoleApplet must be a subclass of java.applet.Applet, must
have a field named roleThread of type java.lang.Thread, and must implement the two
callback methods start() and stop(). The start() callback method has been opened,
showing the specifications of what the programmer is expected to do in order to fulfill framework
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Figure 5.3: Instances View

obligations and this design fragment.
A client programmer using the Catalog View could scan through the design fragments and

find one that matched his goal. The Catalog View describes the relevant framework classes and
interfaces he needs to know about, and describes what his source code must do, which helps him
move from his goal to a solution.

While the Catalog View shows only design fragments, the Instances View shows design
fragments and their bindings to source code. Using the Instances View, the client programmer
can see how other programmers have used this design fragment. Seeing the design fragment used
in context should help him better understand how it is used, and comments in the source code
may yield additional insights.

Each use of a design fragment, which we call a design fragment instance, is given a name.
Usually a design fragment is used just once per class or package, but not always. For example,
we analyzed a two-player Tetris game that used two background threads, so it used two instances
of the Background Continuous Task V1 design fragment. The Instances View shows the design
fragments in a tree with each instance as a child of its parent design fragment.

Figure 5.3 shows the Instances View with some of the nine instances of the Background
Continuous Task V1 design fragment, the design fragment that was shown earlier in the Catalog
View. This view shows where each role in the design fragment is bound in the Java source code.
For example, the scope.at1 instance has the RoleApplet and RoleThread roles bound to the
Scope Java class, and the roleThread role bound to the clock field. The client programmer can
navigate to the relevant parts of the source code itself by double clicking on these role bindings.

The Instances View will indicate binding problems, such as when a class role is not bound
to any Java class. Any conformance analysis failures are also shown in this view. In the figure,
the specifications for the start() method have been opened, revealing checkmarks indicating
successful conformance. The user interface distinguishes three states: pass (a checkmark), fail
(an X sign), or no analysis tool is available for this specification (a question mark).

So far we have discussed how a client programmer who is writing new source code would use
the design fragment tools. We now switch our discussion to a client programmer who is reading
some existing source code, trying to understand how it uses the framework. This programmer
would see the design fragment bindings in the source code, and could navigate from the source
code back to the Instance View and Catalog View. This link back to the design fragment reveals,
through the stated goal of the design fragment, the original author’s intention in writing the code.
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Figure 5.4: Context View

It also reveals the non-local client-framework interactions, helping him understand how this part
of the program connects to other parts of the program that he may not have found yet.

The Catalog and Instance Views display how single design fragments work, but a client pro-
grammer will also need to understand the intersecting demands of many design fragments. The
Context View displays a list of the relevant specifications for what the programmer is editing.
A programmer editing the createPartControl method, shown in Figure 5.4, would see a
large number of design fragments intersecting, all of them contributing specifications. This in-
tersection, or tangling, happens because multiple design fragments may provide specifications
for the same callback method. In our experience, the busiest callbacks are the lifecycle callbacks
that mark the initial creation or imminent destruction of an object. As can be seen in the figure,
six different design fragments are contributing specifications in this example.

For each specification, the Context View shows the specification, its originating design frag-
ment and instance, and the conformance status of the source code. At a glance, the client pro-
grammer can see all of the obligations this source code must satisfy, and whether those obliga-
tions have been satisfied.

Because a client program is filled not only with the client-framework interactions but also
with its domain logic, it can be helpful to elide part of the program, and focus just on the im-
plementation of a single design fragment. A client programmer trying to debug the Background
Continuous Task V1 design fragment would benefit from seeing just the classes, fields, and meth-
ods in the client program that are bound to that design fragment. This is analogous to seeing an
aspect [40] of the client program, or a slice [68] through it.

Figure 5.5 shows the Slice View displaying an Applet. The user has selected the scope.at1
instance of the Background Continuous V1 design fragment. The view shows the two class roles
from the design fragment, RoleApplet and RoleThread, which in the source code are both bound
to the same class, Scope. RoleApplet has three roles: roleThread, start, and stop (by conven-
tion, the programmer is free to change the name of roles beginning with “role” but should keep
the same name otherwise). RoleThread has one role: run. This view has elided all other classes,
fields, and methods in the project, limiting the client programmer’s view to the parts that are
relevant for this design fragment. It removes non-locality by combining source code from every
class, field, and method into a single view.

In order to compute the view shown in the figure, the tool uses the design fragment instance
that the user has selected in the Instance View, which in this case is the scope.at1 instance.
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Figure 5.5: Slice View

The design fragments tool keeps data structures tracking the binding between that instance and
the source code, so it is possible to extract just the source code corresponding to the bound roles.
Note that, in our tool, entire methods are shown and no attempt is made to eliminate irrelevant
statements within the method. Also, our tool has not extracted method parameters from the AST
so they are shown as question marks.

5.2 Design Solutions without Owning the Architecture

A client programmer who designs a solution may find that it conflicts with the framework au-
thor’s design of the framework. The framework author has envisioned how the framework will
be used, and has provided service methods and callbacks to enable that use. The framework
author’s design choices decide how constrained the client programmer’s design space will be.

Since design fragments represent known-good solutions, a client programmer who uses one
of them need not worry about finding a solution that is compatible with the framework, since
all of the design fragments are compatible. The design fragment Catalog View displays the list
of design fragments, and, by scanning through that list, the client programmer can select one to
use. The existence of the design fragment catalog helps the client programmer by taking away
his old job, which was searching through a solution space where poorly understood framework
constraints often prevent him from using his standard bag of programming tricks, and gives him
a new job, which is scanning linearly through the design fragment catalog to find a match.
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Figure 5.6: Problems View

5.3 Gain Confidence of Compliance
Once the client programmer has written the source code and bound it to a design fragment, he
would like to be sure that his code correctly does what the design fragment says it should. Our
analysis tools check conformance; their findings are visible to the client programmer in two views
we have already discussed: the Instances View and the Context View. Findings are also visible in
the Eclipse Problems View, a standard view in the Eclipse IDE that collects all problems found
in the IDE.

We have augmented the standard Problems View to display the problems that are found by
our analysis tools. As seen in Figure 5.6, when source code fails to meet the specifications
defined in the design fragment, the problems are reported as warnings in the Problems View.
Clicking on the problem will navigate the programmer to the line in the source code where the
problem was detected.

Most problems are reported as warnings, including conformance analysis failures and in-
complete bindings. A few problems are reported as errors, including the declaration of design
fragment instances where the design fragment is not found in the catalog. Arguably every prob-
lem could have been reported either as an error or as a warning. However, since programmers
can evolve a program such that it no longer conforms to a design fragment, yet correctly interacts
with the framework, a warning seems more appropriate than an error.

In addition to appearing in the Problems View, errors are also presented in the source code
editor. Figure 5.7 shows the createPartControl method and line 315 has been commented
out. Consequently, a design fragment conformance error has been noted with a warning sign at
line 305 where the design fragment is bound. Placing the mouse cursor on this warning sign
reveals the text of the warning message.

The Eclipse IDE includes convenient features like incremental compilation upon the saving of
source files so that the list of problems is always accurate. Programmers have grown accustomed
to this style of interaction with their tools, so the design fragments tools are built to work in
a similar way. Changes to the source files that define design fragments cause those files to
be re-parsed and presented in the Catalog View. Any changes to the catalog propagate to the
design fragment Instances View. Similarly, changes to the Java source code trigger re-analysis
of the bindings to design fragments and these are displayed in the Instances View. Any problems
detected during these steps are reflected in the Problems View.

Our initial implementation of the specification checkers analyzed the full project with every
change, but, as the size of the case studies grew, the time required to re-analyze grew larger than a
minute. We re-implemented the analysis to run in the background and analyze just what is needed
to recalculate the specifications, not the entire project. The analysis runs in a separate thread so
that the programmer does not wait; the design fragment views update within a few seconds. Our
tools check specifications in an incremental, background style that is consistent with the way
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Figure 5.7: Errors appearing in editor

that current IDE’s check type and syntax errors, and this ability contributes to design fragments
providing pragmatic help to client programmers.

All of the analyses use the Eclipse Abstract Syntax Tree (AST). By default, AST’s from
Eclipse do not resolve bindings of names, which speeds up AST creation by a factor of 3. For
example, from examining a .java file we can see that a class named B is defined but we may
not yet know if it is a subclass of A until names are bound. In order to correctly implement some
of the analyses we need to have the names resolved. The current engineering compromise is
to leave the analyses turned off that require the name binding, and only occasionally turn them
on. Other options include using a faster AST implementation, or formalizing the quick-versus-
accurate modes of checking into the tool, rather than asking the user to toggle analyses manually.

5.4 Represent Solutions
Client programmers have difficulty representing their known-good solutions, and without design
fragments would likely resort to HowTo articles or example code to communicate their knowl-
edge with others. We propose that a better way to express this knowledge is to write a design
fragment.

The design fragments tools represent a design fragment as an XML file with simple syntax.
Once a client programmer has written a design fragment in a file, it is parsed and presented in
the design fragment Catalog View. Any parsing errors are displayed in the Problems View.

Our tool’s implementation of the design fragment catalog makes it easy to share design frag-
ments and to keep the catalog updated. The design fragment catalog is represented as an Eclipse
project and the files in the project are the XML design fragment definitions. Eclipse can synchro-
nize projects with source code control repositories, like CVS or Subversion, so programmers can
stay updated with the latest design fragment catalog on the internet. Following the Debian [59]
example of maintaining stable, testing, and unstable builds of their Linux distribution, each de-
sign fragment catalog has folders for stable, testing, and unstable design fragments. It is expected
that most programmers would use the stable design fragments, which have been vetted by the
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catalog maintainer, but programmers on the cutting edge could use the testing or unstable folders.
Each catalog contains design fragments for just one version of a framework.

5.5 Encode Design Intent
Once a client programmer has learned enough about the framework and has implemented all
the non-local client-framework interactions necessary, he may become concerned that other pro-
grammers will not understand his design intent. If he binds a design fragment to his code,
however, the annotations he places in his code preserve his design intent.

...
@df.bindings({

@df.binding(inst="scl1", role="RoleView")
})
public class SampleView extends ViewPart

...
}

The above example shows an annotation on a Java class. With the design fragments tools, this
annotation connects the source code back to the design fragment definition, and from there to the
related places in the source code.

5.6 Connect with External File
Since modern frameworks often require both object-oriented source code as well as external
configuration files, client programmers need to coordinate their work across both. A design
fragment can specify that parts of the source code are correlated to parts of an XML configuration
file. When a client programmer is using a design fragment for the first time, the tools will
guide him to implement both the object-oriented code as well as the external configuration file.
Furthermore, during evolution of the source code, the tools will warn him when the name of a
class in his source code changes without a corresponding change to the configuration file, and
vice versa.

5.7 Use Cases
The design fragment tools were built to overcome the difficulties we identified with frameworks.
The tools help programmers to cope with the difficulties by enabling specifc use cases. Use cases
are at a more detailed level than the difficulties, and more easily traced to the specific tools that
we have built. We have organized these use cases by the phase of software development where
they would be most helpful.

1. Comprehension and evolution of existing client code

• Understand the overall client use of the framework by reading the declared design
fragment instances
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• Disentangle code in method by understanding what goal(s) each interaction (e.g., a
method call) supports

• Determine how a particular interaction contributes to the overall intention of the client
program by tracing it to the design fragments that require it

• Learn a method’s obligations to the framework
• Navigate from a particular mechanism to its goal, and from there to related mecha-

nisms

2. Generating new client code

• Search for design fragment matching known goal
• Document design intent for the benefit of other programmers by declaring design

fragment instances and bindings
• Check that specified obligations within a class or method have been met

3. Debugging existing client code

• Navigate from a particular mechanism to its goal, and from there to related mecha-
nisms

• Focus attention on parts of code contributing to a single goal
• Detect when code evolution disrupts existing code

4. Learning about the framework

• Learn what framework can do by browsing the catalog of design fragments
• Navigate from goal to relevant framework API documentation via a design fragment

These use cases are directly supported by our tools today, but the underlying data structures
enable the support of even more use cases, including wizards to write the bindings and additional
visualizations of the design fragments and constraints. We discuss these possibilities in Section
9.5.

5.8 Summary
The design fragments tools are built into the Eclipse integrated development environment. Sev-
eral views are visible to the user including a view of the design fragment catalog, a view of the
design fragment instances, a view of the design fragment specification problems, a view of the
specifications relevant to the currently edited method, and a view showing a slice through the
program only revealing those classes, fields, and methods that pertain to a given design frag-
ment. Analysis tools run in the background and incrementally check conformance between the
specification and the source code.

These views and analysis tools enable design fragments to directly help programmers ad-
dress the six difficulties we identified with frameworks. Help is available to client programmers
who are beginning to write code. Since the views present design fragments that are known-
good solutions, the solutions will conform to the framework architecture and other framework
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constraints. Help is also available to programmers trying to understand or evolve existing code,
since the bindings to design fragments reveal the intention of the client programmer, and allow
easy navigation to other relevant parts of the source code.

In the future work section of the conclusion chapter, Section 9.5, we discuss some ways we
would like to see the design fragment tools extended, specifically to reduce the client program-
mer’s effort and to increase his understanding of how the source code works.
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Chapter 6

Case Study: Applet Framework

To demonstrate that our technique is pragmatic, we must apply it to real frameworks. Early stage
research such as this must be judicious in their investigations, so we have focused our attention
on two case studies. The first is a thorough investigation of a small framework, and the second is
a targeted investigation of a large framework. The two case studies are complimentary in that the
first shows our technique working on a complete but small example, and the second demonstrates
that the technique will work when the framework size is large.

This chapter presents the first case study, an investigation of the Applet framework [63]. We
progressed through the complete use of our technique, from initial catalog creation to its con-
formance checking on client programs. We built a complete catalog consisting of twelve design
fragments that describes the interactions between fifty-six Applets and the Applet framework,
indicating that Applets were consistent in their use of the framework. The growth rate of our
catalog was asymptotic, which supports the conclusion that our technique is pragmatic. We also
discovered examples where programmers failed to comply with the framework, indicating that
our tooling to check conformance would be helpful.

The following sections describe the Applet framework, our procedure, results, and discus-
sion.

6.1 Applet Framework

The Applet framework allows Java code to run inside of a web browser. The framework presents
the Applet with a canvas to draw on, and makes events like mouse clicks available to the Applet.
The author of a web page can embed an Applet using an HTML tag like this, optionally passing
in parameters:

<applet code=MyApplet.class param=5>

Sun has bundled demonstration Applets with the Java Development Kit (JDK) since its original
version. The JDK today contains twenty demo Applets, and thousands more can be found on the
internet with a simple search.

The Applet framework is small, yet it is built from the same object-oriented mechanics as
other frameworks. Client programmers must understand, for example, the framework constraints,

55



Figure 6.1: Applet callbacks

the framework callback methods, the framework service methods, and how non-local client-
framework interactions can achieve a goal.

The Applet framework defines several lifecycle callback methods that are invoked on the
programmer’s Applet when the user starts the Applet in the web browser. As shown in Figure
6.1, the Applet first receives an init callback, then at least one start and stop pair of
callbacks, then a single destroy callback. After receiving a start callback, it may receive
paint callbacks until it receives the stop callback.

In addition to these callback methods, the Applet framework also defines service methods that
the client program can invoke on the framework. Many of these service methods are for setting
up additional callbacks that communicate events, such as addKeyListener and remove-
KeyListener. After calling addKeyListener, the client program will receive additional
callbacks from the framework, keyPressed, keyReleased, and keyTyped, informing the
Applet of these events as they occur.

The Applet framework is closely related to the Java Abstract Widget Toolkit (AWT). Any
AWT program can become an Applet by subclassing from java.applet.Applet. As we
discuss in Section 6.5.3, this complicated our procedure for finding Applets on the internet.

6.2 Hypotheses

This case study was designed to demonstrate that the variety of design fragments was low. We
expected to find several design fragments by examining the first few Applets, and, as more Ap-
plets were examined, we expected to find fewer and fewer new design fragments. Ideal evidence
of low design fragment variety would be a small catalog whose size grew asymptotically.

We also hoped to find evidence that client programmers were following an examples strat-
egy. Therefore, the first Applets we examined were demo Applets, Applets that other client
programmers may have examined as examples.

The following section describes our case study process.
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6.3 Process

Starting with an empty catalog of Applet design fragments, we examined the demo Applets.
As we recognized repeated patterns of client-framework interaction, we created new design frag-
ments, bound them to the source code, and added them to our catalog. We then identified Applets
from the internet to be examined. We attempted to bind our existing design fragments to the in-
ternet Applets, and added new design fragments to our catalog when needed. Finally, we used
internet searches to collect aggregate demographic information on internet applets [14]. The
subsequent sections describe this process in more detail.

6.3.1 Demo Applets

Since we initially had no design fragments for the Applet framework, we needed a source of ex-
ample Applets. We selected the twenty demo Applets provided by Sun in the Java Development
Kit. We expected that these Applets, like other example client programs, were provided to show
what the framework could do and so were likely to exercise many parts of the framework.

Starting with the first demo Applet, we examined the source code looking for uses of frame-
work callback and service methods. When we recognized repeated patterns we documented them
as a design fragment.

At the end of examining the twenty demo Applets, we had created a catalog of design frag-
ments for the Applet framework. Each Applet declared a set of design fragment instances, and
their roles were bound to the source code. The constraint checking tool reported no errors of
conformance except those resulting from limitations in the tool itself. An example of such a
limitation is that the tool could not check if required method calls happened in subroutines.

6.3.2 Collecting Internet Applets

To evaluate our existing catalog of Applet design fragments with a set of Applets from the inter-
net, we first had to identify these Applets. We searched the internet for Applets using this search
string in Google:

filetype:java "import java.applet.Applet" -site:sun.com

However, as we discuss in Section 6.5.3, this search yielded mostly AWT programs that did not
meaningfully engage in the Applet framework, meaning that they did not use any of the Applet
framework callback methods or service methods.

The filetype:java part of the search string constrains the results to files ending with
java. Words in quotation marks must appear in sequence in the results. Words with a dash in
front of them, like -site:sun.com, are negated. The words site:sun.com part restricts
the search to the sun.com domain, but since it is prefixed with a dash, it returns results not from
sun.com.

We augmented our search string to select Applets that implemented Applet callbacks or in-
voked Applet-specific service methods on the framework. For example, to find threaded Ap-
plets, we added java.lang.Thread to the search string; to find mouse listener Applets, we
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added java.awt.MouseListener; to find parametrized Applets, we added getParam-
eter. We collected the first ten Applets that matched each search string, and, with duplicates
from our searches eliminated, collected thirty-six Applets in total.

6.3.3 Apply Catalog to Internet Applets
To apply our catalog to the internet Applets, we proceeded similarly as with the demo Applets,
except that we used the catalog of design fragments already created. When possible, we identified
and bound existing design fragments to the source code of the internet Applets. We added new
design fragments to the catalog as needed.

6.3.4 Collect Demographic Information
In addition to the detailed examination of individual Applets, we collected aggregate demo-
graphic information about Applets on the internet. We used the Google search engine to find
Applets, as before, and we recorded the number of search results that matched our query. We
attempted to exclude Applets written by Sun from our search, as these overlap with the demo
Applets. Our basic query to find non-Sun Applets was:

filetype:java "import java.applet.Applet" -"Sun Microsystems, Inc.
All Rights Reserved." -site:sun.com.

Queries appended additional search terms to this string. For example, to find Applets that over-
ride the init callback, we appended “init”.

6.4 Results
Here we present the results of our investigation of demo and internet Applets. The design frag-
ments in our catalog can be divided into categories: threaded Applets, event handling Applets,
and other Applets. We have organized our results to describe each category and the design frag-
ments within it. We conclude our results with the aggregate demographic information.

From the twenty demo Applets we found ten design fragments. The set of demo Applets
contained two design fragments not found in the internet Applets: One-time Init Task and the
Timed Task. The set of internet Applets contained two design fragments not found in the demo
Applets: Background Continuous V1 and Focus Listener. All other design fragments were found
in both.

We added two new design fragments from our examination of the internet Applets, yielding a
catalog of twelve design fragments. We added the Background Continuous V1 design fragment,
a variant of an existing design fragment. These two design fragment variants have the same goal,
and are very similar in structure, differing only in a single check that occurs in the run method.
V1 checks that the thread field is not null, while V2 checks that the thread field is equal
to the currently running thread. The other added design fragment, Focus Listener Applet, is
structurally similar to the other listener design fragments except that it listens for user interface
focus changes.
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Design Fragment Name Description Instances
from

demos

Instances
from

internet
Threading
Background Continuous v1 A separate thread used to execute an

ongoing task
0 9

Background Continuous v2 Same as above, but with a race
condition removed

6 3

One-time Init Task A separate thread used to run a task
at startup, once

2 0

One-time On-Demand Task A separate thread used to run a task
at a domain-specific time, once

1 3

Timed Task A task that should be repeated
regularly

1 0

Event Handling
Component Listener Listening for component events 1 1
Focus Listener Listening for when the Applet gets

focus in the GUI
0 1

Key Listener Listening for keyboard events 1 2
Mouse Listener Listening for simple mouse events 10 12
Mouse Motion Listener Listening for complex mouse events 4 11
Other
Parametrized Applet An Applet that reads parameters

from a web page
13 17

Manual Applet An Applet that can be run from the
command line because its main
method manually invokes the Applet
lifecycle methods

5 5

Table 6.1: Design fragment frequency

A tabulation of the design fragments, including a short description and how often they oc-
curred, is shown in Table 6.1. The first column lists the design fragments by category and name.
A short description of the design fragment is in the second column, and the number of times the
design fragment was found in the demo and internet Applets are in the third and fourth columns.

Table 6.5 at the end of this chapter is a compilation of all of the Applets analyzed and the
design fragments that were found within them. The following sections describe each of the
identified design fragments in detail.

6.4.1 Threaded Design Fragments
There are five design fragments that we have categorized as related to threading: Background
Continuous V1 and V2, One-Time Init Task, One-Time On-Demand Task, and Timed Task.
These design fragments have the goal of coordinating a programmer-created thread with the
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Figure 6.2: Background Continuous V1 and V2 structure

framework callback methods.
The Applet framework never explicitly requires programmers to create new threads, yet our

searches reveal that 27% of Applets on the internet do. The Applet framework constrains the
solution space for programmers and, in response, programmers have solved their problem using
threads. The API documentation for the Applet framework does not instruct or suggest that the
client programmer should use threads.

Figure 6.2 shows the structure of the Background Continuous V1 and V2 design fragments.
The threads in these design fragments are intended to run for a long time, usually the duration of
the Applet.

The One-Time Init Task design fragment uses a thread to perform a time-consuming startup
task, such as establishing a connection with a server. The task is done in a background thread so
as to keep the GUI responsive. This task is started in the init callback method. The One-Time
On-Demand Task generalizes the One-Time Init Task. In it, the background task can be started
at any time during the running of the Applet, such as when the user presses a key.

The Timed Task design fragment was only found in the demo Applets, but could have been
applied in many places where Background Continuous was used. Timed Task uses a Java Timer
instead of a thread and the Timer can be set to run every so many milliseconds. Many uses of
the Background Continuous design fragments could have been written more simply and with
less risk of a race condition if they had used the Timed Task instead, but none of the Applets we
examined from the internet used this design fragment.

6.4.2 Event Handling Design Fragments
As we described in our description of the Applet framework in Section 6.1, the Applet framework
allows client programs to request to be notified via a callback method of additional events from
the framework. The design fragments that we have categorized as related to event handling all
follow the structure shown in Figure 6.3, which shows the Mouse Listener design fragment.

To receive these additional callbacks, the client program must implement the appropriate
listener interface, in this case MouseListener, and provide implementations for each of the
required callback methods defined in that interface. In the init lifecycle callback method of the
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Figure 6.3: Mouse event handling structure

Applet, the client program must call a framework service method to register for callback events of
this type, in this case addMouseListener. The corresponding removeMouseListener
service method must be called from the destroy lifecycle callback method to de-register for
events. As we discuss in Section 6.5.2, many of the Applets from the internet did not de-register
for events, while the demo Applets generally did de-register.

6.4.3 Parameterized Applet Design Fragment
Parameterized Applet deals with how to obtain the textual parameters that can be passed into an
Applet, and how to report to users what parameters can be passed in. Java Applets are often run
from web pages and it is possible to pass parameters into the Applet via the HTML text, like:

<applet code=ArcTest.class width=400 height=400>

In this case, the parameters width and height are passed in as strings with values of 400. The
Applet can read these parameters with the framework service method getParameter(String
parameterName). An Applet should let its users know what parameters they can pass in, and
this is done with the non-lifecycle callback method getParameterInfo, which returns an
array containing the parameters and their expected types. The structure of this design fragment
is shown in Figure 6.4.

Ideally, every Applet that reads parameters would publish the fact that it reads them. Fur-
thermore, the published list should match exactly the calls to getParameter made by the
Applet. In practice, more than half of the Applets from the internet had a mismatch between the
parameters they queried and the parameters they published. We speculate that it is easy for a
client programmer to add a parameter check, but forget to update the list, breaking this non-local
constraint.
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Figure 6.4: Parameter handling structure

We had trouble expressing the constraints for this design fragment using our language. The
getParameterInfo method returns an array of arrays, where each row has information on a
single parameter. The constraint is that every call to getParameter(String parameterName)
that is made in the Applet must have a matching row for parameterName. Conversely, no row
exists for a parameter that is not queried. This is difficult for the design fragment language be-
cause the contents of the array are not static. As we discuss in Appendix A, we could create
a new design fragment specification and push the complexity of checking conformance into a
difficult-to-write analysis routine.

In Section 9.5, we discuss how framework authors should choose constraints that are easier
to check, now that design fragments are available. For example, the framework constraint could
insist that both getParameter and getParameterInfo only refer to static final fields,
which would make the conformance check easy.

6.4.4 Manual Applet Design Fragment

Manual Applet deals with how to provide a main method that simulates the callback structure of
an Applet, so that the Applet can be invoked from the command line in addition to running with
a web browser. In Java programs, the main method is the first one executed when the program
starts. In order to execute the Applet by simulating the framework callbacks, calls to the Applet’s
init and startmethods are invoked by the client program from its main method. The main
method must also create a java.awt.Frame for the Applet to be run in. The structure of this
design fragment is shown in Figure 6.5.

6.4.5 Demographics

We searched the internet for Applets using our basic search string to find non-Sun Applets:

filetype:java "import java.applet.Applet" -"Sun Microsystems, Inc.
All Rights Reserved." -site:sun.com.
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Figure 6.5: Manual Applet structure

This search yields 52,700 results, where each result is a Java file, so we interpret it to mean
52,700 Applets. All of our searches were conducted using the Google search engine in February
of 2006.

From this set of Applets, we further queried to find out how often certain strings appeared,
such as the names of the Applet framework callback methods or service methods. We did this by
appending additional strings to the basic query, and the results are shown in Table 6.2.

This aggregate demographic information provides evidence that not all Applets conform
to the framework constraints. For example, only 510 of the 14,600 Applets that use threads
(4%) call currentThread, meaning that they are candidates for Background Continuous
V1, the buggy one, but not Background Continuous V2, the correct one that requires a call
to currentThread. Similarly, we see many calls to register for event callbacks, but few calls
to de-register. We discuss this non-conformance in more detail in Section 6.5.2.

6.5 Discussion

A surprising outcome of this case study was the discovery of the widely reproduced threading
bug, which we represented as a design fragment named Background Continuous V1. Applets
that conformed to that design fragment had a threading bug, but the design fragment did respect
the framework constraints. Not so other Applets, which for example, violated the framework
constraints regarding event registration and de-registration.

We will also discuss a possible selection bias in our sampling of internet Applets, and the
likelihood that other authors would create slightly different design fragments. We conclude our
discussion with an examination of our hypotheses: that the variety of design fragments is small,
and that client programmers are following the examples strategy.
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Internet count
All Applets 52,700
with paint 33,400
with start 21,400
with stop 15,300
... with both 14,700
with init 41,600
with destroy 597
... with both 579
with getParameter 9,440
with getParameterInfo 221
... with both 180
with MouseListener 837
with MouseMotionListener 448
with KeyListener 385
with ComponentListener 108
with “void main” 566
with Thread 14,600
... also with “currentThread” 510
with Timer 851
with addComponentListener 118
with removeComponentListener 1
... with both 1
with addMouseListener 573
with removeMouseListener 49
... with both 48

Table 6.2: Internet Applet demographics
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6.5.1 Threading Bug
As was described earlier, we identified two design fragments that have identical goals, but differ
in regards to a threading bug in one of them: the Background Continuous V1 (buggy) and V2
(correct) design fragments. The original Java Development Kit (JDK) contained a demo Applet
called NervousText, shown in Figure 6.6, that repeatedly painted text onto the screen, off-
setting it each time by a pixel or two, which had the effect of making the text look “nervous.”
Unfortunately this very simple demo Applet also contained a bug in how it coordinated the Ap-
plet callbacks with thread creation and termination.

...
public class NervousText

extends java.applet.Applet
implements Runnable {

...
Thread killme = null;
...
public void start() {

if (killme == null) {
killme = new Thread(this);
killme.start();

}
}
public void stop() {

killme = null;
}
public void run() {

while (killme != null) {
try {
Thread.sleep(100);

} catch (InterruptedException e){}
repaint();

}
killme = null;

}
...

Figure 6.6: NervousText JDK 1.0 Applet

The programmer’s intent during the stop callback is to signal to the running thread that it
should terminate. The signal is that the killme field is set to null. The race condition occurs
when the framework invokes both start and stop before the thread checks the value of the
killme field. When that happens, the old thread continues executing, since it missed the signal
to terminate, and a new thread executes too, since it was started in the second call to start.
The bug was fixed in the next release of the JDK, and the check for killme != null was
replaced with the more precise killme == Thread.currentThread().

Note that while there was indeed a race condition in NervousText that could yield two or
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more active threads, there was no user-perceived error. Since the original Applet just wiggled
text on the screen, having multiple threads meant it wiggled a bit faster. When this buggy pattern
is reused elsewhere, however, the extra thread may be perceived by the user, for example as a
double-fast opponent in a video game.

It is tempting to use the Java mechanism of deprecating individual methods to solve this
problem. Deprecation can be successfully used to inform client programmers that a method in
an API should no longer be used. Deprecation does not work in this example because the error
does not lie in any framework method, but instead in the pattern of the client programmer’s use
of those framework methods. Specifically, NervousText implements the start, stop and run
callbacks and does not violate the contract for any of them.

Concurrency is notoriously difficult, so it is tempting to dismiss this bug as just another
threading bug. However, it is possible that this bug resulted from a programmer’s misunder-
standing the framework callback sequence. The JDK 1.0 method documentation for start
reads:

This method is called by the browser or applet viewer to
inform this applet that it should start its execution. It
is called after the init method and each time the applet
is revisited in a Web page.

A subclass of Applet should override this method if it has
any operation that it wants to perform each time the Web
page containing it is visited. For example, an applet with
animation might want to use the start method to resume
animation, and the stop method (II-§3.1.22) to suspend the
animation.

The implementation of this method provided by the Applet
class does nothing.

See Also: init (II-§3.1.13) destroy (II-§3.1.2).

Figure 6.7 shows both the correct callback state machine and a simplified, but incorrect, version.
Such a state machine was not delivered with the Applet framework but it can be deduced through
careful reading of the documentation. The way it can be deduced is by recognizing that “each
time the Applet is revisited in a Web page” is not clear, therefore the safe assumption is that the
Applet might get lots of start/stop calls. A quick reading can yield the incorrect reasoning
that “I do not cause my Applet to be revisited (whatever that means), so I will just get one
start and stop callback”. Indeed, normal testing of the Applet may never yield multiple
start/stop callbacks since the user must do something like minimize the browser while the
Applet is running to trigger an additional pair of start/stop callbacks. While it cannot be
determined at this point how the bug in NervousText originated, it is consistent with both the
hypothesis that “threading is hard” and with the hypothesis that “framework callback sequences
are hard to understand”.

This bug, once introduced in the demo Applets provided with JDK 1.0, has spread widely.
The revised JDK containing the corrected Applet was delivered in 1997, yet collecting Applets
from the internet today reveals more Applets with the bug than without. In our examination of
thirty-six Applets from the internet, we found that just 3 of the 12 Applets used the corrected
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Figure 6.7: Applet callbacks - correct (left) and incorrect (right)

version of the design fragment, as seen in Table 6.1. Fixing the bug requires testing to see “Am
I the thread that should be running?”, which requires a call to currentThread. An internet
search, as shown in Table 6.2, reveals that just 510 of 14,600 Applets that use threads also call
currentThread. Consequently, our finding that 75% of the Applets using the buggy V1 of
the design fragment is likely too low, and a more accurate number may be 96%.

The prevalence of this buggy code derives from the copying of a buggy example, and the
inability of the example author to influence the copies. An Applet bound to the buggy V1 of the
design fragment, however, could be notified by the tools when the design fragment is marked
deprecated.

6.5.2 Non-Conformance

We observed substantial non-conformance to framework constraints. We will focus on two con-
straints. The first constraint is that an Applet that registers for events should also de-register for
them. The demo Applets appear to be trying to adhere to the register/de-register constraint, and
only 3 fail to do so. In some of the Applets that do conform, comments in their change logs
indicate that missing calls to de-register have been added.

The second constraint is that Applets should publish and check the same set of parameters.
An Applet can ask the framework if the user has passed it a parameter by calling the get-
Parameter service method, and it can publish the set of parameters it takes by overriding the
getParameterInfo callback method. The demo Applets were unerring in conformance to
the Parameterized Applet design fragment, in that every parameter they checked with a call to
getParameter was paired with the results of getParameterInfo.

Evidence. The Applets from the internet often did not conform to these constraints. In
the Applets we examined, almost all of the listening Applets failed to de-register for events, and
about two-thirds failed to pair the parameters they read via getParameterwith the parameters
they reported via getParameterInfo. The observed non-conformance of the Applets we
examined is shown in Table 6.3.

Our aggregate demographic information obtained via internet searches (see Table 6.2) sup-
ports our detailed examinations. Searches reveal that less than 10% of Applets de-register for
mouse listener events, and less than 1% de-register for component events. The parameter con-
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Demo
Applets

Internet
Applets

Failure to define getParameterInfo 0 / 13 12 / 17
Failure to de-register for events 3 / 16 26 / 27

Table 6.3: Non-conformance to design fragment

straint is worse, with searches revealing that only 2% of Applets that use parameters both use,
and report using, parameters. Our aggregate searches cannot reveal if the checked and reported
parameters were paired up in that 2%, but this was a common problem in the Applets we exam-
ined.

We note these deviations not as compelling evidence that design fragments can reduce bugs in
code, but rather as evidence that even in debugged, released code it is possible to find violations
of framework constraints because of non-local client-framework interactions.

Framework encapsulation. It is likely that with such widespread non-conformance the
Applet framework authors cannot change the framework implementation in a way that it requires
Applets to observe these constraints. This raises two questions. First, what is the impact of the
non-conformance? And second, was the non-conformance deliberate?

As the Applet framework is currently implemented, there is no user-perceived error when an
Applet fails to de-register for events. One perspective is that it is unimportant because the Applet
is being destroyed anyway, and so has no impact. Our perspective is that the failure to de-register
violates framework encapsulation. The assumption that the framework will ignore the violation
is itself a dependency on the framework’s internal implementation details.

In other frameworks, notably the Eclipse framework, a failure to de-register can yield er-
rors, including null pointer exceptions. This happened to us during our development of tools in
Eclipse. We failed to de-register when one of our views was closed, so subsequent events were
still sent to our view. Garbage collection did not delete our view since there were still references
to it, but internal invariants no longer held in this state of limbo. Errors occurred when the view
tried to process the event, leading to null pointer exceptions.

Through their descriptions of classes, interfaces, and methods, the Applet framework authors
specified details that clients could depend on, while attempting to keep their implementation de-
tails changeable. Client programs, by depending on implementation details of the Applet frame-
work, have forced a new constraint on the framework designers, and have limited the evolvability
of the framework.

One interpretation of this data is that programmers incorrectly inferred the constraint, and
another interpretation is that they were knowingly ignoring it. It is unfortunate if programmers
incorrectly inferred the constraints from the demo Applets. But it is equally unfortunate if pro-
grammers correctly inferred how to use the framework, but then deliberately chose to violate its
constraints.

Whether the non-conformance is evidence of incorrect inference or evidence of deliberate
dependence on framework internals, it is evidence that the standard strategy of using method
signatures and demo programs to specify client-framework interactions is deficient. Furthermore,
the use of design fragments would reveal to framework users that they are depending on a safe
and supported use of the framework.
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public class Simple
extends java.applet.Applet {

public Simple() {
add( new java.awt.Label("Hello") );

}
}

Figure 6.8: Simple AWT Applet

6.5.3 Selection Bias

Because of how Applets evolved out of the Abstract Widget Toolkit (AWT), not all Applets
meaningfully engage in the Applet framework. Figure 6.8 shows an example of a simple AWT
program that extends java.applet.Applet yet does not meaningfully engage with the Ap-
plet framework. Every legal AWT program is also a legal Applet so long as it derives from
java.applet.Applet. The engineering advantage to this choice was that any AWT pro-
gram could be run in a web browser simply by subclassing from java.applet.Applet.

Our search process eliminated simple programs, as above, by requiring that the Applet over-
ride a framework callback, or invoke a framework service method. We did this by adding the
names of these callbacks and service methods to our search string.

As a result, we were sure to get Applets that used the features we searched for, but our
collection of Applets no longer represented a neutral sampling of Applets on the internet. A
possible concern about our process is that our searches preferentially targeted specific kinds of
Applets, specifically those using threads, engaging in event listening, and reading parameters.
Our internet searches indicate that 27% of Applets use threads, 3.5% use events, and 18% use
parameters.

In addition to bias introduced because of our targeted searches, there is bias in the ordering
of search results from any search engine. We used the Google search engine, which tries to sort
the most relevant results to the top using proprietary algorithms and heuristics. We may have
uncovered this bias when we saw 75% conformance to the (buggy) Background Continuous V1
design fragment from the top Google results (see Table 6.1) versus a 96% conformance based on
raw search results (see Table 6.2).

6.5.4 Authoring Consistency

Early versions of our design fragments were often overly specific, but we were able to generalize
them when they were recognized in subsequent Applets. For example, the first Applet might
register itself for framework event messages, but the second Applet registered a separate object
for the same messages. This can be generalized by creating two roles in the design fragment, one
role for the object that registers and another role for the object that receives the messages.

When the differences between Applets were irreconcilable, two versions of the design frag-
ment were created. While we expect that irreconcilable differences could result from inventive-
ness of the client programmers in developing solutions, in this case study the only irreconcilable
difference found was a result of a threading bug that was later fixed, yielding a design fragment
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Background Continuous V1. Must have a field holding reference to thread, Must create thread
in start, assigning field to thread, Must set field to null in stop, Must implement run
and loop continuously until field is found to be null.

Background Continuous V2. Must have a field holding reference to thread, Must create thread
in start, assigning field to thread, Must set field to null in stop, Must implement run
and loop continuously until field is not the same as currently running thread.

One-time Init Task. Must create thread in init, Thread must execute run to completion just
once.

One-time On-demand Task. May create thread at any time, Thread must execute run to com-
pletion just once.

Timer. Must create a new TimerTask in start and call schedule on it, Must call cancel
on the TimerTask in stop.

Event Handling (all kinds). Must register in init using addZZZListener, Must imple-
ment relevant interface, Must implement interface methods, May fail to de-register in
destroy using removeZZZListener.

Parametrized Applet. Must call getParameter, perhaps not from init, May fail to de-
fine getParameterInfo, May fail to match getParameter calls with getParam-
eterInfo data.

Manual Applet. Must have main method that calls init and start on Applet

Figure 6.9: Conformance criteria for design fragments

for the buggy pattern and another for the fixed one.
Recognizing a design fragment is equivalent to defining a category. The design fragment

author must examine source code and recognize that a subset of that code is repeated elsewhere.
The author then encodes this pattern as a design fragment and binds it to the source code. Some
of our initial attempts to define design fragments were overly broad (e.g., an Applet that paints
to the screen) and others overly narrow (e.g., an Applet that has a background thread for running
a control panel). The selection of an appropriate scope became easier after defining a dozen or
so design fragments. However, it is natural that different authors would create different design
fragments in same way that different authors would create different code libraries.

6.5.5 Hypothesis: Small Catalog
The creation of a catalog of design fragments is an investment of time and energy that must be
recouped by usage afterwards. The faster the catalog can be built, the faster the investment can
be recouped. Ideally, the demo Applets would reveal all the design fragments seen elsewhere.

Our examination of thirty-six internet Applets led to only two design fragments being added
to the catalog. One of the two added design fragments, however, is the deprecated Background
Continuous V1, a buggy version of Background Continuous V2. It is marked as deprecated
in our catalog, and our tools warn any client programs that bind to it.

The second design fragment we added was Focus Listener, one of the five event handling
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Figure 6.10: Applet catalog growth

design fragments, and was structurally the same as the others. The API documentation for Applet
reveals that the following nine events can be requested: component, focus, hierarchy bounds,
input method, key, mouse, mouse motion, mouse wheel, and property change. Presumably there
should be identically structured design fragments for all nine of these. In the fifty-six Applets
examined, we found Applets that used five of the nine (component, focus, key, mouse, and mouse
motion).

Overall, the observed rate of catalog growth appears to be asymptotic, as is shown in Figure
6.10. This graph shows that most of the design fragments were discovered quickly, with ten
of the twelve present in the demo Applets. The internet Applets interacted with the framework
with high consistency, and as a consequence we were able to bind the existing design fragments
already in our catalog instead of defining new ones.

It is worth considering the perspective of an Applet programmer. If the Applet framework
authors had delivered the demo Applets, and had bound them to a catalog of design fragments,
how much would this have helped an Applet programmer? By looking at the graph and assuming
that the programmers use the correct Background Continuous V2 instead of V1, it would appear
that thirty-six new Applets could be written, requiring just one additional design fragment. But
the prospects are even better, because the complete data, shown in table 6.5, shows that the one
additional design fragment had a single use. So, thirty-five of the thirty-six new Applets could
have been created from the original catalog, indicating that the original catalog would have been
quite helpful to programmers writing new Applets.
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Thread field name Demo
Applets

Internet
Applets

killme 1 1
engine 1 1
runner 2 4
kicker 1 1
timer 1 0
marcher 0 1
my_thread 0 1
_helloThread 0 1
aniThread 0 1
clock 0 1
tetris1, tetris2 0 1
artist 0 1
loader 0 1

Table 6.4: Frequency of thread field name

6.5.6 Hypothesis: Examples Strategy
Before starting this case study, our hypothesis was that programmers trying to use a framework
sought out example code, studied that code to discern the patterns of framework use embodied
in the code, and then used those patterns in their own code. We believed that few programmers
were returning to “first principles”: studying the framework API and inventing a solution that
worked within the constrained solution space provided by the framework. The results of this
case study support these beliefs.

It is likely that programmers were referencing and copying the demo Applets. The first
indication is the duplication of the thread field names found in both the demo Applets and the
internet Applets. Table 6.4 shows the thread field names from the demo and internet Applets.
Note that the highlighted field names killme, engine, runner, and kicker are found in both the
demo Applets and the internet Applets. Overall, seven of the fifteen field names used in the
internet Applets originated in the demo Applets.

The second indication that programmers were referencing and copying the demo Applets is
the prevalence of the threading bug originally found in the earliest demo Applets. 75% (9 in 12)
of the threading Applets we directly investigated, and as many as 96% (14,090 in 14,600) of the
Applets found via an internet search, exhibit this bug. Both items together strongly suggest that
programmers looked to the demo Applets to learn how the framework should be used.

Based on the evidence from this case study, it appears that the variety of ways that program-
mers use the framework is limited. As we discuss in more detail in Section 9.3.2, we believe that
the demo Applets acted as seed crystals, and programmers who could have solved problems in
many ways instead chose to use the solution found in the demo Applets. 27% of Applets found
on the internet are using a thread, yet all 15 threaded Applets we examined in detail employed
either the Background Continuous or One-Time On-Demand Task design fragments. While there
is ample opportunity for variety, Applet programmers appear to have reused existing solutions.
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6.6 Summary
This case study of the Applet framework has supported our hypotheses that there is limited va-
riety in how client programs interact with frameworks, and that programmers follow an example
strategy when building client programs. We examined twenty demo Applets and thirty-six inter-
net Applets, and built twelve design fragments to specify the client-framework interactions we
observed. Most of the design fragments were found in the demo Applets, and one of the design
fragments found in the internet Applets contained a bug that had been fixed nearly a decade ago,
but whose fix had not propagated to the Applets that had copied it.
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Sun demo animator 1 1 1 3 3 3
Sun demo arctest 1 1 4 1
Sun demo barchart 1 1 4
Sun demo blink 1 1 2 5 1
Sun demo cardtest 1 1 5
Sun demo clock 1 1 2 5
Sun demo dithertest 1 1 1 3 5
Sun demo drawtest 1 1 5
Sun demo fractal 1 1 1 3 5
Sun demo graphicstest 1 1 5
Sun demo graphlayout 1 1 5
Sun demo imagemap 1 1 1 1 4 6 1
Sun demo jumpingbox 1 1 1 3 7 1
Sun demo moleculeviewer 1 1 1 1 4 8 1
Sun demo nervoustext 1 1 1 3 8
Sun demo simplegraph 0 8
Sun demo sortdemo 1 1 1 3 9 1
Sun demo spreadsheet 1 1 1 3 10 1
Sun demo tictactoe 1 1 10
Sun demo wireframe 1 1 1 1 4 10
Internet anbutton 1 1 2 10
Internet antacross 1 1 1 3 10
Internet antmarch 1 1 1 3 10
Internet blinkhello 1 1 10
Internet brokeredchat 1 1 1 3 10
Internet bsom 1 1 10
Internet buttontest 1 1 2 11 1
Internet cte 0 11
Internet demographics 1 1 2 11
Internet dotproduct 1 1 1 3 11
Internet envelope 0 11
Internet fireworks 1 1 2 11
Internet gammabutton 1 1 11
Internet geometry 1 1 11
Internet hellotcl 1 1 1 3 11
Internet hyperbolic 1 1 2 11
Internet iagtager 1 1 11
Internet inspect 1 1 11
Internet kbdfocus 1 1 1 3 12 1
Internet linprog 1 1 2 12
Internet mousedemo 1 1 2 12
Internet myapplet2 1 1 1 1 4 12
Internet nickcam 1 1 12
Internet notprolog 1 1 12
Internet scatter 1 1 12
Internet scope 1 1 2 12
Internet simplepong 1 1 12
Internet simplesun 1 1 2 12
Internet smtp 1 1 12
Internet superapplet 1 1 2 12
Internet tetris 2 2 12
Internet ungrateful 1 1 12
Internet urccalendar 1 1 12
Internet urlexample 1 1 2 12
Internet webstart 1 1 1 1 4 12
Internet ympyra 1 1 12

Total 9 9 2 4 1 2 1 3 22 15 30 10 108

Table 6.5: All Applets with origin and counts of design fragments
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Chapter 7

Case Study: Eclipse Framework

The previous chapter presented a case study on the Applet framework, investigating whether the
use of design fragments was practical on a small framework. Our results showed that a catalog
of twelve design fragments could describe the interactions of the fifty-six client Applets studied.
However, since the Applet framework is small and ten years old, we were concerned that the
results could be different on a larger and newer framework.

This chapter presents a case study on the Eclipse framework, a large framework undergoing
current extensive development. To be clear, we have dealt with Eclipse in many ways in this
thesis. Eclipse is a Java Integrated Development Environment (IDE). Our design fragment tools
work within that IDE, and those tools are built on the Eclipse framework. This chapter presents
a case study on other programs that use the Eclipse framework.

In this case study, we set out to investigate whether, in a large framework, the patterns of
client-framework interactions were limited. We created a catalog of design fragments by exam-
ining a demo Eclipse client program. Our results indicate that the design fragments in our Eclipse
catalog are close matches to the client programs from the internet, supporting the hypothesis that
clients are following consistent patterns when interacting with the framework.

We also set out to investigate whether design fragments could cover a majority of the client-
framework interactions. To do this, we tallied all client-framework interactions in our demo
client program. This case study reveals that our design fragment catalog covered 98% of such
interactions.

This chapter details our case study procedure and results, and then discusses the evidence for
our hypotheses.

7.1 Eclipse Framework
The Eclipse framework allows software tools, as client programs, to be written and interoperate.
It is composed of many smaller frameworks that build upon each other. For example, the popular
Java Development Tooling framework, which is used by programmers as a Java IDE, is an ex-
tension of the Eclipse Platform framework, which itself extends the Eclipse Equinox component
model framework.

Eclipse is quite large for a framework at nearly two million lines of code [11]. It has been
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under development since 1999 [35], initially by a team of forty IBM and OTI developers who had
previously written IBM’s VisualAge development environment. Now the Eclipse Foundation, a
not-for-profit corporation supported by 115 commercial companies, maintains stewardship of the
framework and the source code is extended by the constituent Eclipse companies via open source
collaboration.

7.2 Hypotheses
This case study was designed to investigate whether the variety of design fragments was low. We
hoped to find that the design fragments in our catalog were also seen in client programs from the
internet. Ideal evidence would be 100% conformance between the design fragments we defined
and the client-framework interactions seen in the internet client programs.

We hoped to find evidence that client programmers were following an examples strategy.
Our catalog was created from a demo Eclipse client program in the expectation that other client
programmers would also have referenced it when creating their client programs.

The following section describes our case study process.

7.3 Process
Our primary concern in the design of our process was how to collect convincing evidence re-
garding the variety of client-framework interactions while keeping the effort manageable. In the
Applet case study, each Applet was examined fully, but most Applets used only a few design
fragments. Our prior experience programming within the Eclipse framework provided us the
intuition that many Eclipse client programs would use a dozen or more design fragments. We
chose to examine in fine detail a single demo client program, and create a catalog of design frag-
ments from it alone. To find out if other client programs interacted with the framework in the
same way, we conducted targeted searches to find client programs on the internet. We did not
fully examine each of these, but instead evaluated each to see if it used design fragments from
our catalog.

While we were examining our client program in detail, we collected data to compute a cover-
age metric, which indicates how many client-framework interactions in the client program were
specified in our design fragments. We also took the opportunity to create a sufficiently complete
list of client-framework interaction types. The following sections describe our process in detail.

7.3.1 Choose Client Program
As the subject of our investigation, we selected a client program for the Eclipse framework.
Like in the Applet case study, we wanted to choose a client program provided by the framework
authors so that the design fragments we found were most likely to represent canonical client-
framework interactions.

Unlike the Applet framework, where the demos are simply included in a directory, the Eclipse
framework has a “wizard” that guides the user through a series of dialog boxes to create some
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Figure 7.1: Screenshot of our client program

example code with features that the user selects from a limited list. Eclipse client programmers
are as likely to have seen code generated by this wizard as Applet client programmers are to have
seen the demo Applets.

We created a client program with this wizard, choosing options for a client program that puts
a tree view on the screen. It is a sophisticated “Hello, world” program. A screenshot of the
program running is shown in Figure 7.1.

Our selected client program is heavy on framework interaction, and relatively light on domain-
specific processing. About 10% of the program is devoted to setting up a simple parent-child data
structure to be presented in the tree view. The overall size of the program including whitespace
and comments is 451 lines, and about 245 lines when whitespace and comments are omitted, but
leaving end curly brackets on their own lines.

7.3.2 Identify Client-Framework Interaction Types
Starting with our chosen client program, we identified all of the client-framework interaction
types. We insisted that each interaction be observable from the syntax of the source code. We
categorized the client-framework interactions and recorded the frequency of occurrence of each
of them in our client program.

7.3.3 Create Design Fragment Catalog
At the beginning of this case study, we had a pre-existing catalog of Eclipse design fragments that
we had created two years earlier. We started with that catalog, and modernized it to accommo-
date changes to the Eclipse framework, adding or revising the design fragments that were found
in our client program. The new and revised design fragments were created by examining our
client program until we understood it and could identify the relevant non-local client-framework
interactions that contributed to a single goal.

We declared instances of the design fragments from our catalog, and bound them to our client
program.

7.3.4 Identify Required and Optional Interactions
We examined each client-framework interaction in our client program, and tagged it as being
required, optional, or no interaction for each design fragment. For example, on the Pulldown
Menu Action design fragment, it is required for clients to call the getMenuManager method,
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and for them to include an Action in the menu. But it is optional for them to add a Separator
to the menu, or to set the text displayed when the user hovers the mouse over that menu item.

While the choice of what was required or optional was subjective, few parts of the design
fragments were optional in our catalog. The criterion for an interaction to be required was, “Is
it essential to the design fragment?”, and for optional parts, “If it is not essential, is it likely that
clients will often do this part too?”

From this data we computed coverage metrics, indicating how much of the client-framework
interaction could be explained through the design fragments.

7.3.5 Examine Internet Use
Our process so far had yielded a catalog of design fragments that we had derived from just one
client program, a client program provided by the framework authors. To see if our design frag-
ments were also seen in other client programs, we looked for their occurrence in client programs
found on the internet that were trying to accomplish the same goal. We set an acceptance thresh-
old of 30%, meaning that for us to accept that a design fragment was genuine, it should appear
in at least 30% of the internet client programs.

Our intent was similar to the one used in the Applet case study. We chose appropriate search
strings, searched the internet for client programs, and compared the client-framework interac-
tions in the resulting client programs to those specified by our design fragments. When analyzing
the Applets, we fully examined each, and added new design fragments to our catalog as needed.
This was impractical on the Eclipse framework, given the size of the framework and the size of
the client programs. Here, we focused our attention on how the internet client programs used the
design fragments we already had in our catalog, and did not define any new design fragments.

The first step was to find Eclipse client programs on the internet. Our base search string to
find these client programs was:

filetype:java org.eclipse -IBM

This yields only Java programs that use the Eclipse framework, but excludes client programs
written by IBM.

The second step was to focus this search to yield client programs that might be following one
of our design fragments. We wanted to find client programs that had the same goal as one of our
design fragments, then to examine them to see if they accomplished that goal consistently with
the design fragment we had already defined.

The challenge with this approach is to target the search, but not narrow it so much that it only
yields occurrences of our design fragments. From each design fragment we extracted a subset of
keywords that were sufficient to find appropriate uses, but not so specific that they would only
find exact matches to the design fragment. We explore this possibility in section 7.5.1. The
search strings are shown in Table 7.1.

Each of the 12 search strings was entered into Google and the top 10 results were recorded,
for a total of 120 results. These results were client programs that used the Eclipse framework,
and we hoped had goals matching our design fragments.

We analyzed each client program to see if it matched the design fragment we had in our
catalog. We scored each comparison as one of three choices: an exact match, a basic match, or
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Design Fragment Search String
Content Provider ITreeContentProvider ViewPart setContentProvider
Double Click Action IDoubleClickListener addDoubleClickListener ViewPart
Drilldown Adapter DrillDownAdapter addNavigationActions ViewPart
Label Provider LabelProvider setLabelProvider ViewPart
Popup Dialog openInformation
Pulldown Menu Action ViewPart getMenuManager add
Right Click Menu IMenuListener ViewPart addMenuListener
Shared Action Image getImageDescriptor getSharedImages setImageDescriptor
Shared Image getImage getSharedImages
Toolbar Menu Action ViewPart getActionBars getToolBarManager add
Tree View “new TreeViewer” setInput ViewPart
Viewer Sorter setSorter ViewerSorter ViewPart

Table 7.1: Internet client program search strings

not a match.

Exact Match. An exact match meant that the client program was required to conform to every
part of the design fragment as it was already written.

Basic Match. When it was possible to have revised the design fragment such that it could ac-
commodate both the usage seen in our original client program and the internet client pro-
gram, we scored it as a basic match. A basic match can be thought of as an over-specified
design fragment. We discussed our process for reconciling design fragments in Section
6.5.4.

Not A Match. Everything else was scored as not a match.

We did not require the results to be unique, so some client programs were examined for more
than one design fragment.

7.4 Results
The results of our case study include the following artifacts: a list of client-framework interaction
types, a catalog of Eclipse design fragments, bindings between client programs and our design
fragments, and a spreadsheet with line-by-line tagging of client-framework interactions by type
and the design fragments that relate. We were able to compute some aggregate metrics from these
artifacts, including coverage of client-framework interactions by our design fragment catalog.

7.4.1 Client-Framework Interaction Types
We created a list of the types of client-framework interaction found in our client program. Our
goal was to identify as many framework interactions as possible, while ensuring that identifica-
tion was unambiguous from the syntax of the program. The items in the list can be unambigu-
ously identified from simple syntactic analysis of the client source code. The following list is
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sorted, and begins with the most common interaction type.

Method Invocation. The client invokes a method on a framework class. Only a subset of the
framework methods can be invoked by a client. These are known as “service methods”.
Service methods line up quite closely with Java’s public methods on the framework classes
but there are cases where framework methods must be made public for implementation
reasons, yet are not intended for use by framework clients.

Overrides Method. The client class is a subclass of a framework class and overrides (creates
a method with the same name as) a method on that superclass. This is usually done with
a method that has been chosen for this purpose by the framework designer, a so-called
“template method.” Java methods designated as private cannot be overridden but methods
may be left as public or protected for reasons other than allowing overriding.

New Class Instance. The client creates a new instance of a framework class or subclass. This
interaction will rarely do anything useful since creating a new instance usually does not
change the state of other objects in the framework but it is a prerequisite for other stateful
changes.

Static Class Reference. The client makes a named reference to a framework class, for example,
by referring to org.eclipse.SomeClass. This is in contrast to using object refer-
ences passed to the client as parameters. Note that a static class reference usually implies
either a static field access or a static method access.

Static Field Access. The client reads a static field on a framework class. Theoretically, the client
could also read non-static public fields on non-static framework objects, but such a design
leads to poor encapsulation and consequently we did not find any examples of it in the case
studies.

Extends Superclass. The client defines a new class that is a subclass of a class (i.e., extends)
provided by the framework.

Implements Interface. The client defines a new class that implements an interface provided by
the framework.

Invokes Static Method. The client invokes a static method on a framework class.

Field Holding Framework Object. The client assigns to one of its fields a reference to a frame-
work object. This has the effect of saving some state provided by the framework.

While we would prefer that this list includes every type of client-framework interaction present
in our client program, our subjective identification process used in developing the list does not
provide assurance of completeness. Additionally, we know that our client program does not
contain every type of client-framework interaction. For example, our client program did not
reference any public fields from framework objects, and such client-framework interaction is
usually discouraged by framework authors, but it is known to be missing from our list.

Analysis of the data reveals the relative frequency of each identified type of client-framework
interaction. As seen in Table 7.2, the most common was a method call from the client to the
framework, accounting for 43% of all interactions. Also common were overridden methods and
creation of framework objects, accounting for a quarter of all interactions. While subclassing
and implementing interfaces are commonly thought of as essential parts of interacting with a
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Framework Interaction Type Count %
method invocation 50 43%
overrides method 15 13%
new instance 15 13%
static class reference 10 9%
static field access 8 7%
extends superclass 6 5%
implements interface 4 3%
static method invocation 4 3%
field holding framework object 4 3%
Total 116 100%

Table 7.2: Framework interaction counts

framework, the combined frequency is relatively low, at 8%, possibly because one subclass over-
rides and calls many methods. There were 116 total interactions between the client code and the
framework in the roughly 245 source lines, indicating dense framework interaction.

7.4.2 Design Fragment Catalog
The following is a list of the design fragments in our Eclipse catalog. The number in paren-
theses following the name of the design fragment is the number of required client-framework
interactions specified in the design fragment.

Content Provider (13). Provides the content to be displayed by a view.

Double Click Action (8). Adds double-click behavior to a view.

Drilldown Adapter (6). Adds navigation controls for drilling into a tree view.

Label Provider (8). Provides the labels corresponding to content displayed by a view.

Popup Dialog (4). Pops up a modal dialog box to the user.

Pulldown Menu Action (13). Adds an action to a pulldown menu on a view.

Right Click Menu (16). Adds a right-click “context” menu to a view.

Shared Action Image (5). Use shared images from the workspace using Image Descriptors.

Shared Image (3). Use shared images from the workspace.

Toolbar Menu Action (12). Adds an action to the toolbar menu on a view.

Tree View (8). Creates the skeleton of a tree view.

Viewer Sorter (5). Sorts the content in a tree view.

7.4.3 Coverage by Design Fragments
After creating the catalog, we tagged the client program line-by-line to reveal the connection
between each client-framework interaction and our design fragments. Table 7.3 shows an excerpt
from this effort. In the table, an “R” represents a client-framework interaction that is required by
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the design fragment, “O” an optional interaction, and “-” no interaction. For example, line 352
should be interpreted as meaning that a New Instance interaction, where a new TreeViewer
object is created, is required by one design fragment, the Tree View design fragment.

Since there can be multiple framework interactions on a single line of source code, we have
reformatted the source code shown in Table 7.3 so that there is just one interaction per line. To
improve readability, we have omitted the Static Class Reference interactions from the table. They
are present in line 352 where the class named SWT is explicitly named three times.

This excerpt is derived from a spreadsheet whose rows were the reformatted lines of source
code, and whose columns were the design fragments. The spreadsheet also counted the R’s and
O’s to reveal how many design fragments mentioned each interaction. We derived the data shown
in Table 7.4 from the spreadsheet.

Most interactions, 67%, were required by a single design fragment, indicating that the in-
teraction existed in support of a single goal. However, some framework interactions existed to
support more than one goal. 11% of the interactions were required by two or more design frag-
ments. Since each design fragment has a single goal, this means that 11% of the client-framework
interactions existed to support multiple goals. We discussed this condition, called tangling, in
Section 4.3. An example of tangling of goals is seen in line 351 in Table 7.3, where the over-
riding of the createPartControl method is required by multiple design fragments. The
design fragments all require that the client program do something in the body of this method.
Most of the tangling that we observed was on callback methods, like createPartControl,
or on fields.

Our line-by-line examination enables us to calculate what percentage of the client-framework
interactions in our client program are covered by design fragments. For our definition of “cov-
erage,” we include any interaction that is mentioned as a required or optional part of a design
fragment. Based on this definition, 98% of the interactions between the client and framework
were covered, with just 2 in 116 interactions left uncovered. A tighter definition that includes
just the required parts from the design fragment yields 78% coverage.

The two client-framework interactions that were not covered by a design fragment dealt with
extracting some data out of the current selection parameter so that the data could be presented on
the screen. The two method calls not covered by design fragments are bolded in the following
code snippet:

ISelection selection = viewer.getSelection();
Object obj = ((IStructuredSelection)selection).getFirstElement();
showMessage("Double-click detected on "+obj.toString());

It would be possible to write a design fragment to express the intent of these client-framework
interactions, perhaps one called Debug Selection Change with Popup Message. We did not create
such a design fragment because it appears to us to be a special case, and not generally usable.
It would also be possible to create a Get First Selection design fragment, which could be more
reusable.

7.4.4 Internet Use of Design Fragments
One question that remains after looking at the extensive coverage of client-framework interac-
tions by design fragments is whether or not the design fragments in our catalog resemble what
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Framework Interaction Count %
All interactions 116 100%
Required by 1 or more DFs 91 78%
Required by exactly 1 DF 78 67%
Required by 2 or more DFs 13 11%
Optional by 1 or more DFs 24 21%
Required or optional by 2 or more DFs 17 15%
Not covered by any DF 2 2%
Covered by some DF 114 98%

Table 7.4: Design fragment coverage of framework interactions

most client programs do. We searched the internet for similar client programs. For us to believe
that our design fragment was real, we required it to express the client-framework interactions
seen in 30% of the client programs from the internet that were selected to have the same goal.
We believed that this threshold provided evidence that our design fragments reflect actual usage,
and are not distorted in order to yield high coverage metrics in the previous analysis.

As described in Section 7.3.5, we searched the internet to find client programs whose goals
matched those of each of our design fragments. We collected ten client programs for each of the
twelve design fragments, except for the Drilldown Adapter, because there were only eight unique
results from our query. Many programs were examined more than once because they appeared
as the top results for multiple searches. We examined forty-two different client programs.

We graded each client program as an exact match if the design fragment specified the client
program exactly, a basic match if we could have revised the design fragment to specify both the
demo and the internet client programs, and no match if not, as described in Section 7.3.5. Figure
7.2 shows a chart of the conformance.

Every design fragment in our catalog exceeded our acceptance threshold of 30% confor-
mance. The exact match conformance ranged from 30-100%. When basic matches were included
then the range was 50-100%. The low 50% conformance was on the Label Provider design frag-
ment. Further examination revealed that our search string was overly broad, and yielded code
for label providers of tree data and table data, yet each used a different set of client-framework
interactions. Had there been design fragments for Tree Label Provider and Table Label Provider,
they would have both been at 100% conformance.

Three client programs did not match our design fragment for Double Click Action. The
design fragment describes how to register for a double click event and, when notified of a double
click event, execute an Action. The three non-conforming client programs did not execute an
Action, but instead did their work inside the callback method informing them of the double click
event.

Our conjecture is that conformance was related to the complexity of the design fragment. It
is plausible that programmers make verbatim copies of the most complex code since it can be the
most difficult to understand. However, our analysis shows no correlation between the number
of framework interactions in a design fragment and the conformance seen in the client programs
from the internet.
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Figure 7.2: Design fragment catalog conformance

7.5 Discussion

A surprising outcome of this case study was how well our design fragment catalog, derived
from a single demo client program, could specify client-framework interactions found in internet
client programs. In this section, we discuss whether this could have been caused by a bias in
our selection of internet client programs. We were able to create design fragments that covered
98% of the client-framework interactions in our demo client program, and so we discuss the
significance of that coverage and how it may benefit programmers. We conclude our discussion
with an examination of our hypotheses: that the variety of design fragments is small, and that
client programmers are following the examples strategy.

7.5.1 Selection Bias

A possible concern about our process is that we unintentionally searched the internet for client
programs that were too similar to our selected demo client program. We could have done this by
choosing our search terms excessively narrowly, which would yield results that were predeter-
mined to conform to our design fragment.

To provide some quantitative data regarding the narrowness of our search, Table 7.5 reprises
the previously described search strings for our design fragments, and this time has added columns
for the lengths. We considered the length of the design fragment to be the number of distinct
client-framework interactions it required. The length of the search string was the number of
words in it. Most of the search strings had three or fewer words, and the two search strings with
four words corresponded to design fragments that were at least twice as “long.”

Most of the search strings contained the word “ViewPart,” which corresponds to the Eclipse
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Design Fragment Length Search String Length
Content Provider 13 ITreeContentProvider setContentProvider ViewPart 3
Double Click Action 8 IDoubleClickListener addDoubleClickListener ViewPart 3
Drilldown Adapter 6 DrillDownAdapter addNavigationActions ViewPart 3
Label Provider 8 LabelProvider setLabelProvider ViewPart 3
Popup Dialog 4 openInformation 1
Pulldown Menu Action 13 getMenuManager add ViewPart 3
Right Click Menu 16 IMenuListener addMenuListener ViewPart 3
Shared Action Image 5 getImageDescriptor getSharedImages setImageDescriptor 3
Shared Image 3 getImage getSharedImages 2
Toolbar Menu Action 12 getActionBars getToolBarManager add ViewPart 4
Tree View 8 “new TreeViewer” setInput ViewPart 4
Viewer Sorter 5 setSorter ViewerSorter ViewPart 3

Table 7.5: Internet client program search strings with lengths

framework class ViewPart. As described in its JavaDoc, it is the “Abstract base implemen-
tation of all workbench views.” We included that word in our search strings because our client
program was also a workbench view, and not a dialog box, or a wizard. It is possible that remov-
ing this term would yield lower conformance. However, if transient dialog boxes do not interact
with the framework in the same way as more-or-less permanent views do, then the better path
forward may be to create another catalog of design fragments that represent the client-framework
interactions in dialog boxes.

Upon review, we do not find our search terms to be overly narrowing. For example, to
our knowledge, any client program that wants to listen to double click events must use the
IDoubleClickListener interface and call addDoubleClickListener. More likely,
as we discuss in Section 7.5.4, is that client programmers are either starting with the wizard-
generated code themselves, or copying from other client programs that have.

7.5.2 Coverage
At the onset of the case study, our belief was that design fragments would cover a majority of the
interactions. But the data indicates that essentially all of the interactions (98%) were specified
in one or more design fragments. We expect that the coverage of design fragments on other
programs will be lower than we found here. This program had little domain-specific logic and its
purpose was to use the framework in a straightforward manner. Other client programs may also
use the framework similarly, but with others the quirks of their domains may push them to ask
for less common services, which may not even be noted as optional parts of design fragments.

A more fundamental question relates to what the coverage metric means, regardless of its
score. What has been shown here is that we have examined a client program with 118 client-
framework interactions, and we have documented the rationale for 116 of those interactions to
exist. That is, we know the larger design intent that underlies each interaction.

Perhaps more importantly, those 116 individual client-framework interactions have been ab-
stracted into 15 instances of design fragments. Figure 7.3, previously shown in Chapter 4, shows
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@df.instances({
@df.instance(df="TreeView", inst="treeview1"),
@df.instance(df="ContentProvider", inst="contentprovider1"),
@df.instance(df="DoubleClickAction", inst="doubleclickaction1"),
@df.instance(df="DrilldownAdapter", inst="drilldownadapter1"),
@df.instance(df="LabelProvider", inst="labelprovider1"),
@df.instance(df="RightClickMenu", inst="rightclickmenu1"),
@df.instance(df="ToolbarMenuAction", inst="toolbaraction1"),
@df.instance(df="ToolbarMenuAction", inst="toolbaraction2"),
@df.instance(df="PulldownMenuAction", inst="pulldownaction1"),
@df.instance(df="PulldownMenuAction", inst="pulldownaction2"),
@df.instance(df="ViewerSorter", inst="viewersorter1"),
@df.instance(df="SharedImage", inst="sharedimage1"),
@df.instance(df="SharedActionImage", inst="sharedactionimage1"),
@df.instance(df="SharedActionImage", inst="sharedactionimage2")

})
package eclipseTreeView.views;

Figure 7.3: Instance declarations reveal architectural understanding

the instance declarations for our client program. The use of design fragments has provided these
declarative statements regarding the client program’s goals. These declarations of the client pro-
gram’s intent are fairly comprehensible to a novice, and would be exceedingly comprehensible
to an expert familiar with the catalog. For this client program, design fragments have provided a
compact, declarative explanation of 98% of its client-framework interactions.

7.5.3 Hypothesis: Limited Design Fragment Variety
The Applet case study provided evidence that Applets followed a limited number of patterns
when interacting with the framework. This low variability enabled us to make a small catalog of
design fragments whose growth rate was asymptotic. If the client programs had not conformed
to a limited number of design fragments, then the size of the catalog would have grown much
too quickly to be pragmatic. Before the Eclipse case study, we did not know if the larger Eclipse
framework would work with the design fragments technique. It was possible that Eclipse client
programs did not follow patterns when interacting with the framework.

This case study revealed that client programs for the Eclipse framework were similar to client
programs for the Applet framework, in that both had limited variety in how they interacted with
the framework. This limited variety could be represented as design fragments. This evidence
allays our concern that client programs of larger frameworks behaved differently, and that the
design fragments technique would not work on larger frameworks.

After creating design fragments derived from our client program, we hoped their specifica-
tions would also match the client-framework interactions for a majority of the internet client
programs. We found that, for ten of the twelve design fragments, all of the internet client pro-
grams were “exact” or “basic” matches. An exact match meant that the design fragment, without
any changes, explained both client programs. A basic match meant that the design fragment was
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over-specified, but that it could be revised to match both client programs.

These results support our hypothesis that the variety of design fragments to accomplish a
goal is limited. Looking at Figure 7.2, the shaded bars represent client use of frameworks that
we have explained with our design fragments. The white triangle of space in the top right of the
graph are the cases we could not explain. This white triangle represents just 8 of the 118 times
we tried to bind our design fragments. As noted in Section 7.4.4, correctly distinguishing tree
label providers from table label providers eliminates five of those eight failures.

7.5.4 Hypothesis: Examples Strategy

In this case study, we found evidence that the internet client programmers had reviewed the
example code provided by the framework authors. The internet programs often used exactly
the same method names as our example client program. Examples include makeActions,
hookContextMenu, hookDoubleClickAction, and contributeToActionBars,
which are seen in the excerpt in Table 7.3. Note that the existence of these methods is not
required by the framework, nor does the framework constrain the names of the methods. These
methods were also called in the same order, even when order did not matter.

Two of the internet programs conforming to the Pulldown Menu design fragment followed
the design fragment exactly, except that they did not actually add any actions to the menu. This
appears to be a case where the code from the demo was copied “just in case”.

Several of the internet programs conforming to the Right Click Menu design fragment used
slightly different method names than the design fragment, but those names were consistent with
each other. Examples of these method names are createContextMenu and fillToolbar.
It seems likely that these share another common ancestor besides our example program.

We believe that the high conformance rates seen in Section 7.4.4 are due to the internet pro-
grams often having a shared ancestor. If programmers had followed a “first principles” strategy
and examined the framework API to design their client-framework interaction, then we would
expect lower conformance rates.

An alternate hypothesis is that, for any of the goals, there is only one easy way to accomplish
it with the framework. This would explain why we see such consistent use of the framework by
the different client programs. It would also support the use of an examples strategy, like design
fragments, since there would be few examples to collect. This one-way-to-do-it hypothesis is
at least partly true, in that the framework authors had some use scenarios in mind and designed
the framework to support them. However, client programmers are clearly copying the demo
programs since that is the only hypothesis that can explain the identical method variable names.

Our analysis suggests that there has been substantial copying of code from the examples
provided by the framework authors into the client code from the internet. This copying likely
contributes to the success of the design fragment technique on this framework by reducing vari-
ability in client programs.
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7.6 Summary
We performed a case study on the Eclipse framework to investigate if the variety of design
fragments was small, and to investigate if programmers were following the examples strategy.
To do this, we created a catalog of design fragments that covered 98% of the client-framework
interactions of a demo client program. We then searched the internet for client programs whose
goals matched those of our design fragments. We found that our design fragments were an exact,
or basic, match for almost all of the client programs.
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Chapter 8

Related Work

This work builds upon previous work in a number of areas. Researchers in the 1980’s and 1990’s
documented the use of software frameworks that they observed being used in industrial and
academic settings. Frameworks were described as a new reuse mechanism that differed from
class libraries. Natural language design patterns were suggested as a way for programmers to
understand frameworks [36]. Most design patterns are based on the ideas of role modeling, where
a given class can play various roles and its responsibilities are the superset of the responsibilities
of its roles. Research into design patterns led to tools that could model patterns precisely and
compare them with source code. Some modeling tools and techniques shifted their emphasis
from the whole pattern, which may describe how the framework is implemented, to instead
describe how the program interacts with the framework. Cookbooks and recipes followed a
similar path starting from unstructured text through a precise representation.

This chapter reviews the techniques that have been used to help client programmers work
with frameworks. We organize the existing techniques into four categories and present a brief
summary of each. Finally, we situate design fragments in relation to these works and provide a
detailed comparison with the most similar techniques.

8.1 Organization of the Research

Table 8.1 provides a categorization of the work on framework documentation. It divides the work
along two dimensions describing the style of documentation. The first dimension is whether
the documentation provides examples or helps the programmer to design a solution from first
principles. The second dimension is whether the documentation prescribes how clients should
use the framework or describes the implementation of the framework.

Relatively few projects have set out to describe the internals of frameworks and most of these
projects were relatively older, from a time when frameworks were themselves just beginning to
become popular. Most research has focused on documenting how to use the framework rather
than documenting how the framework is designed. Techniques such as JavaDoc and Design
Patterns can be applied to almost any documentation problem and have been used to describe
how frameworks work internally.

Techniques in the example-based dimension do not claim to document every possible and
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Prescribes how clients should use
the framework

Describes the
implementation of
the framework

First-principles-based Inscape
Programmer’s Apprentice
Helm Contracts
FCL Constraints
UML-F Profile
Declarative Metaprogramming
OOram
Riehle frameworks
FSML
JavaDoc

JavaDoc
OOram
Riehle fwks

Example-based Decl. Metaprogramming
Design Patterns
Hooks
JavaFrames
Cookbooks
JavaDoc
Design Fragments

Design Patterns
JavaFrames
Utrecht Tool
JavaDoc

Table 8.1: Organization of the research

correct use of the framework but instead provide known-good examples. This simplifies the task
both for the documentation author and for the reader.

Conversely, techniques in the first principles-based dimension claim to cover all correct use in
much the same way that functional specifications for methods should cover all cases of inputs and
outputs. For example, the FCL Constraints work presents a case study on Microsoft Foundations
Classes where all subclasses of CWnd must call one of three window creation methods defined
in the framework.

8.2 Specific Techniques

Many techniques have been tried for helping programmers understand and use frameworks. In
addition to the two dimensions from Table 8.1, a technique’s degree of formality can be consid-
ered as an orthogonal dimension, and it influences the level of tool support that can be provided.
We will consider each of these dimensions in this section.

We begin this section with a survey of the related work, and then continue in Section 8.3 with
a detailed comparison of design fragments with the related work.
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8.2.1 Role Modeling

Object Oriented Role Analysis Modeling (OOram) is a software engineering method developed
by Reenskaug that focuses on collaborating objects (role models) instead of classes [53]. Each
role model consists of a number of roles with assigned behavior. Classes are created by com-
posing these roles. A tool for the Smalltalk language was created for authoring and composing
these role models. Reenskaug recalls Cox’s metaphor [10] of the surface area of components,
that is, the things that must be understood about the component for a client to use it correctly, and
applies it to frameworks. He notes that the surface area of a framework should be kept as small
as possible, can be described with role models, and should not be changed for fear of break-
ing existing applications. Reenskaug is credited with the creation of the Model-View-Controller
pattern, whose implementation in Smalltalk may be considered the earliest framework [38].

In his thesis [55], Riehle extends the role modeling concepts from OOram to treat frameworks
as first-class concepts, calling it “role modeling for framework design.” Role models describe the
interface between the framework and the programmer’s code; “free roles” represent the roles the
programmer can implement to use the framework. Programmers should find frameworks with
associated role models easier to comprehend since the complexity of the class models has been
explained in terms of cross-cutting role models.

8.2.2 Precise Design Patterns, Code Ties

The Utrecht University design pattern tool [17], implemented in Smalltalk, allowed the creation
of prototype-based design patterns and binding of these design patterns to source code. Confor-
mance checking between the pattern and source code could be performed and predefined fixes
to repair non-conformance. Modeling focused on design patterns and application of the tool to
frameworks was not specifically explored. Conformance checking was limited to static program
structure.

8.2.3 Cookbooks and Recipes

Confronting the challenge of communicating how to use the Model-View-Controller framework
in Smalltalk-80, Krasner and Pope [41] constructed an 18 page cookbook that explained the
purpose, structure, and implementation of the MVC framework. The cookbook begins with text
but increasingly weaves in detailed code examples to explain how the framework could be used to
solve problems. This cookbook was designed to be read from beginning to end by programmers
and could also be used as a reference but every recipe did not follow a consistent structure nor
was it suitable for parsing by automatic tools.

The work on Hooks by Froehlich et al. documents the way a framework is used, not the
design of the framework [21]. Hooks are similar in intent to cookbook recipes but are more
structured in their natural language. The elements listed are: name, requirement, type, area,
uses, participants, changes, constraints, and comments. The instructions for framework users
(the changes section) read a bit like pseudo code but are natural language and do not appear to
be parsable by tools.
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8.2.4 Patterns

Johnson appears to have been the first to suggest documenting frameworks using patterns. He
notes that the typical user of framework documentation wants to use the framework to solve
typical problems [36] but also that cookbooks do not help the most advanced users [37]. Patterns
can be used both to describe a framework’s design as well as how it is commonly used. He argues
that the framework documentation should describe the purpose of the framework, how to use the
framework, and the detailed design of the framework. After presenting some graduate students
with his initial set of patterns for HotDraw, he realized that a pattern isolated from examples is
hard to comprehend.

Design patterns themselves can be decomposed into more primitive elements [51]. Pree
calls these primitive elements metapatterns and catalogs several of them with example usage.
He proposes a simple process for developing frameworks where identified points of variability
are implemented with an appropriate metapattern, enabling the framework user to provide an
appropriate implementation.

The declarative metaprogramming group from Vrije University [65, 66] uses Pree’s metapat-
terns [51] to document framework hotspots and defines transformations for each framework and
design pattern. Framework instances (plugins) can be evolved (or created) by application of the
transformations. The tool uses SOUL, a prolog-like logic language. The validation was done on
the HotDraw framework by specifying the metapatterns, patterns and transformations needed.
The validation uncovered design flaws in HotDraw, despite its widespread use, along with some
false positives. The work does not detail how evolution of client code would be supported, in-
stead focusing on the evolution of the framework.

A UML profile is a restricted set of UML markup along with new notations and seman-
tics [19]. The UML-F profile provides UML stereotypes and tags for annotating UML diagrams
to encode framework constraints. Methods and attributes in both framework and user code can
be marked up with boxes (grey, white, half-and-half, and a diagonal slash) that indicate the
method/attribute’s participation in superclass-defined template patterns. A grey box indicates
newly defined or completely overridden superclass method, a white box indicates inherited and
not redefined, a half-and-half indicates redefined but call to super(), and a slashed box indi-
cates an abstract superclass method. The Fixed, Adapt-static, and Adapt-dyn tags annotate the
framework and constrain how users can subclass. Template and Hook tags annotate framework
and user code to document template methods. Stereotypes for Pree’s metapatterns (like unifica-
tion and separation variants) are present, as are predefined tags for the Gang of Four [23] patterns.
Recipes for framework use are presented in a format very similar to that of design patterns but
there is no explicit representation of the solution versus the framework. The recipe encodes a list
of steps for programmer to perform.

The FRamework EDitor / JavaFrames project [28, 29, 30] is a result of collaboration be-
tween The University of Tampere, the University of Helsinki, and commercial partners starting
in 1997. They have developed a language for modeling design patterns and a tool that acts as
a smarter cookbook, guiding programmers step-by-step to use a framework. With the 2.0 re-
lease of JavaFrames, the tool works within the Eclipse IDE. Their language allows expression
of structural constraints, and their tool can check conformance with the structural constraints.
Code can be generated that conforms to the pattern definition, optionally including default im-
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plementations of method bodies. Specific patterns can be related to general patterns; for example
a specific use of the Observer pattern in a particular framework can be connected to a general
definition of the Observer pattern.

8.2.5 Languages

The Framework Constraint Language (FCL) [33] applies the ideas from Helm’s object-oriented
contracts [31] to frameworks. Like Riehle’s role models, FCLs specify the interface between the
framework and the user code such that the specification describes all legal uses of the framework.
The researchers raise the metaphor of FCL as framework-specific typing rules and validate their
approach by applying it to Microsoft Foundation Classes, historically one of the most widely
used frameworks. The language has a number of built-in predicates and logical operators. It is
designed to operate on the parse tree of the client program’s code.

The Framework Specific Modeling Language (FSML) [3] is a domain-specific language tar-
geted at the domain of frameworks. The framework is described as a collection of features
with constraints between them. For example, feature A might be required for Feature B but in-
compatible with Feature C. Client programmers manipulate a program written FSML and the
corresponding Java source code is generated by a tool.

8.2.6 Aspects

Aspect oriented programming seeks to improve the modularity of source code by localizing
programmer-chosen concerns into their own input files [40, 48, 64]. For example, the parts of a
program that deal with logging could be extracted to a new source file so they do not clutter up
the main code. Design fragments and aspects share a similar desire to localize related parts of a
program.

While design fragments are specifications, aspects are implementations. It may be possible
to use aspects to provide default implementations for design fragments. Aspect languages such
as AspectJ do not provide any specific mechanisms or advice on how to apply their technology
to the problem of interacting with frameworks.

8.2.7 General Programming Assistance

The complexity of programming has long been recognized and attempts to help programmers
manage that complexity have been researched. The Inscape Environment [49] focused on the
challenges of evolution and scale in procedural programs that use libraries. It addresses these
challenges in part through specification of interfaces, much like design fragments. The specifi-
cation language was deliberately impoverished in order to avoid the tar pit of verification, again
much like the desire of design fragments to maintain simplicity in its language to encourage
adoption.

The Programmers Apprentice [54] was an attempt to apply artificial intelligence to the prob-
lem of programming by providing an intelligent agent to support the programmer. Cohesive
collections of program elements are bound together into a cliché, similar to a design fragment
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based on syntactic code structure, encoding roles and constraints. These clichés are used by the
tool to aid the programmer.

8.2.8 Pattern Mining

Researchers have investigated the identification of design patterns in source code and models.
Early techniques such as DP++ [4] created a set of structural templates and searched for matches.
This was successful for structural patterns but could not distinguish behavioral differences, such
as between the State and Strategy [23] design patterns, nor could it identify novel patterns.

SOUL (Smalltalk Open Unification Language) [43] added an enhanced predicate language to
define the patterns, which enables more flexible querying through unification and backtracking
operations. The patterns could refer to metadata, such as Smalltalk protocols (method cate-
gories). Scripts could be written to refactor code matching one pattern into another.

Newer techniques relax the need to statically define the patterns and are better at analyzing
behavior. SPQR (System for Pattern Query and Recognition) [18, 58] can recognize pattern vari-
ants that had not previously been seen by using a theorem prover. Ferenc et al. [16] use machine
learning and a corpus of manually tagged examples to reduce false positives and distinguish State
and Strategy patterns. Streitferdt [60] has recently surveyed and evaluated pattern mining tools
with respect to precision and recall.

8.3 Comparison to Design Fragments

Cookbook recipes, hooks, and design fragments are similar in that they all provide example-
based descriptions of how to use a framework. Hooks added structure to recipes but was still
natural language. Design fragments regularize hooks to make them tool-readable and enable
tool-based assurance of constraints.

The declarative metaprogramming approach to modeling framework hotspots appears to have
significant up-front investment before payoff in order to provide its guarantees about correct
use of the framework. It may additionally assume a higher level of accuracy or correctness in
frameworks than will commonly be found in practice. In [66], the authors comment that their
approach specifically avoids design patterns in favor of metapatterns because there could be
many design patterns. While this makes their technique generally applicable and composable, it
will likely be difficult to add pattern-specific semantics and behavior checking to their approach
because of this choice.

Though targeted at describing the full variability of the framework interface instead of known-
good examples, the Framework Constraint Language could be used to improve the design frag-
ment tool. A tool that used both could provide a rich constraint language, where design fragment
authors who wrote their constraints in FCL could avoid writing a checker in Java code.

At first glance design fragments appear very similar to Riehle’s role models. But following
the categorization from Section 8.1, it is clear that role models are first principles-based, while
design fragments are example-based. A role model strives to describe the complete and abstract
protocol that every set of classes conforming to it must follow, while design fragments describe
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just a single legal use of that protocol. The difference is stark when considering a popular call-
back method, like createPartControl in Eclipse. A role model would describe how that
callback could be used in every possible situation, while a design fragment describes just how it
is used to accomplish a single goal.

In addition to this fundamental difference, there are differences of focus and intent. First,
design fragments often span multiple framework role models. An example of this is the coor-
dination of the role model for event registration (such as listening for mouse events) with the
role model for lifecycle callbacks (such as registering for events during a particular lifecycle
callback). Second, design fragments often encode actions outside of the framework, such as in
the thread coordination design fragments, which would not be covered by any framework role
model. Third, design fragments are asymmetric, so they define only what the programmer must
do and only provide a programmer-centric view of what the framework roles are doing. How-
ever, the intent of both techniques is to aid programmers in using frameworks and in practice
their strengths are complimentary.

Design fragments are very similar to JavaFrames in that both encode structural patterns that
programmers use to engage with a framework and both enforce this through static analysis. De-
sign fragments extend JavaFrames by adding a description of the relevant parts of the framework.
This minimal description of framework resources respects the encapsulation boundary between
the framework and the client, but informs the client programmer about the framework resources
that client code must interact with.

This added description of framework resources enables two things. First, analysis tools that
check for errors can take advantage of the descriptions of the framework – for example the pro-
tocol of framework callbacks can be specified and checked. This would be especially valuable
in cases where direct analysis of the framework code is impossible because its source is unavail-
able, multiple implementations exist, or because its codebase is too large for the analysis tools to
handle. Second, knowing why a recipe works enables the programmer to go beyond the recipe.
Functionality demands from his problem domain will cause him to push on the limits of the pat-
tern and he must be given an understanding of how this can be done. With exposure to many
design fragments, the programmer will build up a mental model of how the framework acts on
his code.
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Chapter 9

Conclusion

This chapter integrates the evidence gained in the case studies and applies it to the three hy-
potheses we are investigating. These three hypotheses address the ability of design fragments
to provide pragmatic help to programmers who use frameworks. We show how the evidence
supports our main thesis, and discuss remaining concerns.

Design fragments provide a number of contributions to software engineering, including a
new abstraction that represents client-framework interaction, a systematic technique to improve
code quality, and an empirical understanding of client-framework interaction.

9.1 Validation

This dissertation has set out to demonstrate that design fragments and analysis tools can provide
pragmatic help to client programmers who use frameworks. Pragmatism is a high standard,
since a single tragic flaw can defeat it. Within the scope of this thesis, we cannot enumerate
and discharge every possible challenge to practicality, so we have instead addressed the most
visible challenges. We articulated these challenges in three hypotheses, each of which is directly
testable.

Our first hypothesis is that design fragments can be used in real conditions, and the second
is that there are limited numbers of design fragments. The third hypothesis is that conformance
tools can be helpful.

In the following sections, we discuss each hypothesis and the evidence we have gathered
to support it. We then turn to the main thesis and, reprising the six difficulties faced by client
programmers, we show how design fragments help to overcome these difficulties.

9.1.1 Hypothesis: Real Conditions

Before our case studies were completed, we worried that the complexities of real code would
render design fragments impractical. Consequently we set out to test the following hypothesis:

Design fragments can be used with existing large commercial frameworks, real pro-
gramming languages, and off-the-shelf code.
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We applied the design fragment technique by building catalogs of design fragments primarily
for the Applet and Eclipse frameworks, and to a lesser extent for the AWT framework, Acme
Studio, and our own tooling. In total we defined 39 design fragments, each representing a known-
good way for a client to interact with a framework. Each client program that we looked at
either contained an existing design fragment from our catalog or was the source of a new design
fragment.

None of the frameworks or source code we examined was written for the purpose of exercis-
ing design fragments, so everything that we analyzed was off-the-shelf code. All of the source
code was Java, a popular commercial object-oriented programming language. The Eclipse frame-
work, in particular, is a large commercial framework, and the Applet framework, while smaller,
was widely used in the late 1990s.

We bound the design fragments to client programs that we collected. We used client programs
provided by the framework authors, and client programs that we found via internet searches.
Over fifty Applets were examined and every use of a design fragment in them was bound or added
to the catalog. Across the Eclipse client programs, over a hundred design fragment instances
were analyzed from more than fifty client programs. This application of design fragments to
over a hundred off-the-shelf client programs demonstrates that they can be used on real source
code.

To verify that our design fragment language could express the client-framework interactions,
we created a classification system for client-framework interactions by analyzing a selected
Eclipse framework client program. We identified nine types of interaction, and found that all
nine could be expressed in the design fragment language.

Knowing that our language could express these interactions still left open the possibility that
client programs bound to design fragments would only have a small fraction of their interactions
explained. After fully binding a selected Eclipse client program to design fragments, we found
that 78% of the client-framework interactions were required by the design fragments. This rose
to 98% when both required and optional interactions were counted. Either number indicates that
design fragments can explain the majority of client-framework interactions.

Despite our positive experiences, we did find room for improvement in our language, tools,
and conformance assurance. These desired improvements, detailed in Section 9.3, are not large
enough to render design fragments impractical.

In summary, we successfully built design fragment catalogs for some commercial frame-
works, bound client programs to design fragments in the catalogs, demonstrated that all of the
structural client-framework interactions can be expressed, and that the design fragments in our
catalogs can cover the majority of the client-framework interactions. These results support the
pragmatism of design fragments in that they can work outside of laboratory conditions, and they
can handle the complexities of commercial frameworks.

9.1.2 Hypothesis: Design Fragment Variety

Before starting our case studies, we were concerned that it would be difficult to create a catalog of
design fragments that covered the different ways that clients used frameworks. Lacking empirical
data on how client programs interacted with frameworks, we feared that each program would
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interact slightly differently. High variety could mean that there were too many design fragments
to count, rendering our approach impractical.

We hoped that our empirical studies would show that the variety was low, and that client
programs followed repeated patterns of client-framework interaction. Consequently our second
hypothesis is that:

The variety of design fragments to accomplish a given goal is limited, so a small
catalog of design fragments can have good coverage of the code seen in practice.

A catalog of design fragments is built by examining several client programs, recognizing that
they are similar in how they interact with the framework, and then documenting that interaction
as a design fragment. Catalogs grow in size as more client programs are analyzed, revealing new
design fragments to be documented.

The earlier a catalog reaches a useful size, the more pragmatic it will be to build it. For the
catalog, an asymptotic growth rate indicates that the variety of client-framework interactions is
low, since fewer new design fragments are being discovered as client programs are examined.

To validate this hypothesis, we created a full catalog for the relatively small Applet frame-
work. We populated the Applet catalog using design fragments found in the twenty demo Applets
provided by the framework authors. Using just these revealed 81% of the eventual size of the cat-
alog. We surveyed an additional three dozen Applets from the internet and found just two more
design fragments. One of those two was a design fragment that has a threading bug, something
that was present in older versions of the demo Applets, but had been fixed in the demo Applets
we examined. We conclude that the rate of growth of the Applet catalog was asymptotic, and
that creating a complete catalog of design fragments was pragmatic.

We also built a catalog of design fragments for the Eclipse framework. The large size of the
Eclipse framework made the creation of a full catalog too time consuming within the scope of
this dissertation, so we collected other metrics to demonstrate that design fragment variety was
low. We created design fragments from a client program provided by the framework authors,
and then examined how closely client programs from the internet conformed to those design
fragments. Three quarters of the design fragments were completely consistent between the demo
and the internet client programs, and the remaining quarter of the design fragments were over
50% consistent. This data indicates that, as with the small Applet framework, design fragment
variety for the large Eclipse framework is low.

We believe that this low variety is, in part, due to a seed crystal effect: programmers reference
the provided demo client programs, and copy or recreate the solutions they find there. We found
evidence for this behavior both in the Applet case study, where structure and variable names were
copied without changes, as well as in the Eclipse case study, where structure and method names
were copied unchanged.

After examining two different frameworks and over a hundred client programs, the evidence
strongly suggests that client programmers are repeating patterns of client-framework interaction,
which is sufficient evidence that a pattern-based approach like design fragments is pragmatic.

101



9.1.3 Hypothesis: Assurance
The previous two hypotheses supported the pragmatism of design fragments. Our third hypoth-
esis focuses on the ability of analysis tools to help programmers:

Analysis can provide programmers with assurance that their code conforms to the
constraints of the framework as expressed in design fragments.

We implemented three simple static analyses to demonstrate the principle of conformance as-
sistance. The first of these, required method call, was the most common client-framework in-
teraction in our survey, accounting for 43% of all such interactions. The required new instance
analysis was also common, accounting for 13% of such interactions. The third analysis, required
class reference in XML, provides an important bridge between Java source code and required
external XML configuration files.

All three of these specifications were added to the set of design fragment specifications using
our standard extension mechanism. Furthermore, the checkers for them are implemented using
the tool’s standard interface for analysis extensions. Each analysis has access to the data struc-
tures maintained by the design fragments tool plus the abstract syntax tree of the client program.
Because of this, we believe that other analyses should be able to extend the language and tooling
in the same way.

In addition to these three implemented analyses, we have extended the design fragment lan-
guage with other specifications but have not yet implemented the analyses. Through our case
studies we have collected other examples of constraints imposed by the frameworks that we
believe could be checked through analysis tools. These include protocol, concurrency, post-
conditions on state, return values, and other constraints.

Overall this evidence shows that it is possible to assure conformance between the client’s
source code and the specification of the design fragment. Furthermore, it shows that there are
opportunities, in the form of additional framework constraints, for analysis tools to provide as-
surance beyond what has been implemented.

9.1.4 Thesis
The main thesis of this dissertation is:

We can provide pragmatic help for programmers to use frameworks by providing a
form of specification, called a design fragment, to describe how a client program
can correctly employ a framework and by providing tools to assure conformance
between the client program and the design fragments.

In Chapter 2, we identified six difficulties that client programmers face when using frameworks:
they find it difficult to understand non-local client-framework mechanics, design solutions when
they do not own the architectural skeleton, gain confidence that they have engaged with the
framework correctly, represent their successful engagement with the framework in a way that can
be shared with others, and ensure their design intent is expressed in their source code. Design
fragments help overcome these difficulties.

Understand non-local client-framework mechanics. A client programmer with a goal can
look up an appropriate solution defined as a design fragment. This design fragment would de-
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scribe all needed client-framework interactions despite any non-localities. A client programmer
examining source code can use the bindings and design fragment tools to navigate to the various
parts of the code that implement parts of the design fragment and can of course look at the bound
design fragment itself, both of which help the client programmer to understand what the code
does and locate all the relevant client-framework interactions.

Design solutions without owning the architecture. By defining the architecture of the pro-
gram, the framework constrains the programmer’s solution space and it therefore can be difficult
to find a solution. Based on our case studies, in most cases the client programmer should be able
to find a known-good solution in the catalog, which avoids the search for a solution, replacing it
with the easier job of scanning the design fragment catalog.

Gain confidence of compliance. Client programmers using design fragments have increased
confidence that their code interacts with the framework correctly, first because they know they are
reusing a known-good solution, and second because analysis tools assure them that their code has
the needed client-framework interactions. Client programmers who invent their own solutions
worry that they have not handled all the necessary cases or, through an unusual interaction, have
revealed obscure framework bugs. The assurances provided by the conformance tools will likely
never be complete, but more sophisticated analyses will yield increasing assurance, and some
categories of errors can be eliminated completely.

Represent solutions. Design fragments are a compact and tool-readable representation of
a known-good solution and as such are an effective way for programmers to communicate their
solutions to others. Programmers could additionally provide an example program that is bound
to the design fragment, which has all of the benefits of current best practice along with greater
assurance that other programmers will find all non-local interactions and conform to framework
constraints. Example programs alone run the risk that other programmers will infer the solution
incorrectly, as was seen in the Applet demos where the demos deregistered for events in the
destroy method, but client programs from the internet failed to conform to this non-local
constraint.

Encode design intent. Design fragment bindings in the source code are an enduring expres-
sion of the client programmer’s design intent. He is saying that his intent was to use the known
solution defined by the design fragment he names. Other programmers who evolve the code will
not have to guess what his code is intended to do and will feel more confident in removing un-
needed cruft from the program rather than leaving it in for fear that it breaks something they do
not understand.

Connect with external files. Design fragments allow the direct expression of what should be
in external XML files. Three specifications that apply to XML files are provided, and the spec-
ification language can be extended. Programmers applying a design fragment can be confident
that they are creating both the required object-oriented code as well as configuring external files.

We have shown that design fragments are pragmatic in that they work on real code, real
languages, and real frameworks. Client programmers follow regular patterns of client-framework
interaction, which means an example-based approach like design fragments is pragmatic since
the size of design fragment catalogs grows asymptotically. Design fragments are helpful in that
they document how to interact with a framework, but will become additionally helpful as analysis
tools check the constraints specified in the design fragments. Design fragments and tools help
overcome the difficulties faced by client programmers when using frameworks.
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9.2 Pragmatism Concerns

Despite the evidence gained in the case studies, concerns remain about pragmatism of design
fragments. In the following sections, we discuss concerns that could limit the pragmatism of
design fragments. They are:

• Design fragments will not be useful to all programmers, since different programmers solve
problems in different ways

• Domain-specific languages would provide more value
• There may be little opportunity for more specifications
• The expression cost to bind design fragments is high
• Design fragments offer no composability guarantees
• The design fragment language has unfortunate expressability limits
• A design fragment catalog may have a long tail
• Design fragments only work for the Java language

Some concerns may be addressed through improvements in the tools or language, others will
require more information, gained from programmers who use design fragments and report on
their experiences.

9.2.1 Programmer Differences

Not all programmers solve problems in the same way. A usability group at Microsoft has invented
three programming personas to help them understand which features in their development tools
will appeal to which programmers [8]. These three personas are defined in [7] as follows:

• The “opportunistic” programmer, representing the majority of all programmers, likes to
create quick-working solutions for immediate problems and focuses on productivity and
learns as needed.

• The “pragmatic” programmer likes to create long-lasting solutions addressing the problem
domain and learns while working on the solution.

• The “systematic” programmer likes to create the most efficient solution to a given problem,
and typically learns in advance before working on the solution.

In Table 9.1, we have summarized how we expect these three personas would value the different
kinds of information on frameworks.

We expect that novices of all types would find design fragments useful both as a bridge to
becoming experts, and as a tool to ensure correct implementation of their client-framework inter-
actions. While the opportunistic programmers may be satisfied with this level of help, pragmatic
and systematic programmers will likely seek out the other sources of information. Experts who
understand the framework well may already know the pattern expressed in the design fragment,
but will value the conformance assurance and the consistency that comes with using it.
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Opportunistic Pragmatic Systematic
Framework source code No Maybe Yes
API documentation Maybe Yes Yes
Books and courses Maybe Yes Yes
Targeted tutorials (HowTo’s) Yes Yes Maybe
Example client programs Yes Yes Maybe
Design fragments Yes Yes Maybe

Table 9.1: Helpfulness of information to personas

9.2.2 Domain-specific Languages

Domain-specific languages [6] (DSL’s) enable the succinct expression of abstract concepts par-
ticular to the domain. A DSL can be designed such that all programs written in it conform to the
framework constraints. The value of the DSL is unlocked when tooling enables programs written
in the DSL to be compiled into client programs of the framework. DSL’s are unlike tutorials and
design fragments in that DSL’s are of the “first principles” style, rather than the “example” style,
in that they do not encode known-good examples. DSL’s for frameworks can benefit the entire
software lifecycle, yielding high reward.

Since the DSL encodes the constraints particular to a framework, a new DSL and new tooling
would need to be created for each framework. A DSL for a framework would be intellectually
challenging to build because it requires knowledge both of language design and of the framework.
Consequently, DSL’s are a high-value, high-cost choice.

Tutorials, or other forms of documentation, are inexpensive to produce. They are expected to
contain accurate instructions but these instructions can be written informally in natural language.
They may or may not describe why the instructions work or explain the constraints the framework
places on the resulting client program. They only benefit the client programmer during the
software construction time since their instructions cannot be read by analysis or automation
tools. Consequently, tutorials are a low-value, low-cost choice.

Design fragments sit in a sweet spot between DSL’s and tutorials because they provide many
of the benefits of a DSL with its tooling, at a cost that is closer to the tutorial. Design fragments
are tool-readable and consequently tolerate typos less well than tutorials, but it is easy to imagine
a design fragment editing tool that catches many of these syntactic typos. More of an intellectual
challenge is the recognition and expression of the pattern, but this challenge is substantially
lower than that of designing a DSL. We expect that, as with tutorials, all framework authors
and most client programmers would be able to write a design fragment. Unlike DSL’s, where
each framework’s DSL would require custom tools, the design fragments language and tools can
be used across frameworks with few changes to either. Some frameworks may spur new kinds
of design fragment specifications or analysis tools, but once these are written they are likely to
be reusable on other frameworks. So, for about the same cost as writing tutorials, framework
authors can instead write design fragments and get benefits close to a custom DSL tool chain.

One reason that this sweet spot exists is that a design fragment can afford to be an incomplete
specification. Design fragments are not a full functional specification that might be usable by
a tool to generate source code. Instead, design fragments connect many existing dots, dots that
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include method- and class-level API documentation, the client programmer’s experience with
other frameworks, and the client programmer’s general programming skill. The design fragment
provides enough detail for the client programmer to create a working program and for tools to
check that constraints have been met.

Unlike some other formalizations, including DSL’s, design fragments have a gentle adoption
slope and provide value quickly, with just one design fragment in a catalog. It is possible to “dip
your toe in the water” and see how the technology works with a small commitment of time and
energy. Furthermore, anyone with access to the source code can do this and see the results. Each
incremental investment in either a new design fragment or a binding to source code yields value.
It does not require deferred gratification that only comes when an entire program is annotated or
the catalog is complete.

9.2.3 Specifications Opportunities

We have already created some specifications and written some analysis tools to check them,
and we have claimed that programmers will benefit as more specifications are written and more
checkers are built. However, what if frameworks impose few additional constraints? In that case,
there would be little additional benefit to be unlocked.

To find out what other specifications were possible, but not yet included in the design frag-
ment language, we examined the freeform specifications that currently exist as unstructured text
in the design fragments we have written. We collected data from all of our design fragment cat-
alogs, including the partial ones: AcmeStudio, Applet, AWT, DesignFragmentSpecExtension,
Eclipse 3.2, and Runnable. We then grouped the specifications into categories, discarding the
ones that were in essence comments, not specifications. The result was five categories of speci-
fications: protocol compliance, concurrency, state post-conditions, return values, and other.

This list should not be regarded as complete since it was derived from a sampling of the
freeform specifications, and those freeform specifications represent only the constraints that were
noticed by the design fragment author. Please note that I was the primary author of the design
fragments, and also the one who later analyzed the freeform specifications, though the analysis
was performed as much as three years after the specifications were written.

Protocol Compliance. Somewhat surprisingly, we noted just one framework interface where
the client must observe a sequence when invoking framework service methods. In an implemen-
tation of the Visitor design pattern [23], the Eclipse framework provided a state checking method
that could only reasonably be called after the client had first invoked visit on the visitor.

Again in the Eclipse framework, the sequence of callbacks can be changed by the client based
on the return value of a prior callback. The framework invokes hasChildren on the client and
only if the client returns true does the framework subsequently invoke getChildren.

Concurrency. Since the Applet demos dealt heavily with concurrency we have a number
of examples from that framework. The Eclipse framework also works with concurrency but
the programs we examined did not use this part of the framework. The freeform specifications
from the Applet demos gave two kinds of advice to client programmers. The first regards the
nature of the coordination between the threads; the second regards the looping or execution of
the background thread.
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Some threaded Applets communicated with the background thread by manipulating the val-
ues stored in fields which were then read by the background thread. Other Applets did not so
the threads could not communicate. We saw freeform specifications advising the client on the
availability and nature of this communication channel.

When the background thread is invoked, it may need to execute once, or loop, or execute
only if certain conditions are satisfied. We saw freeform specifications advising the client on
this expected behavior, for example, Only run when roleThread == Thread.current-
Thread() and Do domain-specific thread processing once only (no while loop forever).

Post-conditions on State. Frameworks provide callback methods to provide clients with
changed or new objects and the client often stores these objects for future use. We also saw
cases where Applet fields must be set to a particular value to ensure correct communication with
background threads.

Return Value. We found more freeform specifications in this category than any other. In
order to correctly implement a design fragment it was often necessary for the client to return
particular values to the framework. Although these specifications follow the standard format of
a method’s functional specifications, they are only a subset of what the method must do, in effect
identifying just one case that must be handled.

Other. In the Applet framework, every method call that checks a parameter value must be
paired with an entry in an array describing which parameters are checked. We discuss this simple
specification in depth in Appendix A, where we walk through how a specification extension could
be built.

Another piece of advice involved when downcasting was safe. As seen in the example from
Chapter 1, in the Eclipse framework, a client can register for ISelection events but in some
cases it is safe to downcast the object to an IStructuredSelection. In the context of a
particular design fragment, such a downcast might always be safe.

Some of these specifications may be checkable using existing analysis implementations like
Fluid [26] and ESC/Java [9], in particular the concurrency, state post-conditions, and return value
specifications.

From this analysis, it appears that frameworks impose many constraints beyond those al-
ready encoded as specifications in the design fragments language, so there is still considerable
opportunity beyond what has been implemented already.

9.2.4 High Expression Cost
The expression cost of design fragments is high, specifically the effort required to bind design
fragments to code. A design fragment has multiple roles and each role must be bound to the
source code using a verbose Java annotation. Logistically, writing binding annotations is a burden
for programmers. Design fragment authoring is also time consuming, but that burden is borne
by relatively few compared to binding. The concern is that this high expression cost will deter
programmers from using design fragments.

Conceptually, the job of binding a design fragment to source code is simple, since it is just
showing correspondence between the two. To reduce the burden, we need to make the program-
mer’s job no more difficult than showing this correspondence. We anticipate three ways to reduce
this burden.
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First, we can improve the design fragment language to reduce the number of needed bindings.
For example, if a method must have an exact name because it overrides a superclass method or
implements a method from an interface, no binding should be needed but currently the program-
mer must provide it. We chose Java annotations because they are the standard way of annotating
Java programs but this has led to verbose bindings. We could instead put the bindings in Java
comments and reduce the verbosity and complexity of the bindings. We should also allow the
annotations to be placed into a separate file when it is inappropriate or impossible to put the
annotations into the source code.

Second, tools can write the bindings for the programmer. We envision a “binding wizard”
where each role in the design fragment is displayed, and the programmer can select from a list
the corresponding part of the program to bind to. The wizard should be able to suggest methods
that conform to the constraints of the design fragment, or ones that match the required return
value and signature of the method role. The JavaFrames tool [29] can create skeleton code where
no class or method yet exists, and our binding wizard should be able to do this too.

Third, tools can be built to analyze an existing code base and offer to bind the design frag-
ments that it finds. Such a tool is conceptually related to design pattern mining [58]. A mining
tool would allow large existing projects to quickly begin using design fragments without a long
and uninteresting period spent binding.

To quantify the costs and benefits of annotations and specifications, we have compiled data
on what client programmers must provide and what they are provided. Table 9.2 lists the design
fragments from the Applet and Eclipse catalogs with the number of required annotations and
provided specifications. The number of required annotations is divided into three categories. The
current category represents the number of annotations programmers must write with the design
fragment tools today. The forced category assumes that programmers should not have to write
annotations where the choice is forced, for example the createPartControl callback must
have that name exactly, so the annotation can be omitted. The inferred category assumes that we
can further reduce annotations by guessing based on provided type information, for example a
roleViewer field must be of type TreeViewer and there is only one field that matches that
type. Specifications are divided simply into checked, which includes specifications like required
method calls, and total, which additionally includes freeform specifications.

This analysis of the costs and benefits of providing annotations is quantitative, but flawed.
It is easy to count the number of provided specifications, but difficult to count the benefit of
captured design intent, or of focused attention. This analysis also fails to credit learning how to do
something correctly: the Background Continuous V1 and V2 design fragments look equivalent
in this analysis, but benefit has clearly been provided in the transition from buggy V1 to bug-free
V2.

Despite these flaws, we can extract some general trends from this data. One is that for the
“listener applet” design fragments, there is a large reduction in annotation burden in the forced
category. In these design fragments, the programmer is asked to implement a specific interface
and its methods in order to receive events from the framework. In the current system, annotations
must be put on each of those methods, but since the programmer is forced to use those exact
names, we can omit those annotations. This reduction in work is welcome, because each of these
design fragments has just two checked specifications, indicating during what callback to register
and de-register.

108



Number of Annotations Specifications
Current Forced Inferred Checked Total

Applet
Background Continuous V2 7 4 3 3 6
Component Listener Applet 9 3 3 2 2
Focus Listener Applet 7 3 3 2 2
Key Listener Applet 8 3 3 2 2
Manual Applet 3 2 2 5 5
Mouse Listener Applet 10 3 3 2 2
Mouse Motion Listener Applet 13 7 7 2 2
One Time Init Task 6 3 3 2 5
One Time On Demand Task 6 5 4 2 5
Parameterized Applet 4 2 2 1 2
Timed Task 7 4 3 2 4
Applet Total 81 39 36 25 37
Eclipse
Content Provider 11 4 3 3 7
Double Click Action 10 8 7 6 6
Drilldown Adapter 7 6 4 3 3
Label Provider 7 4 3 2 2
Popup Dialog 3 3 3 3 3
Pulldown Menu Action 9 7 7 11 11
Resource Listener 8 4 3 5 6
Right Click Menu 8 6 5 12 13
Shared Action Image 3 3 3 4 4
Shared Image 3 3 3 3 3
Toolbar Menu Action 9 7 7 11 12
Tree View 8 6 5 5 6
Tree View Selection 6 4 2 2 3
Viewer Sorter 5 4 3 2 2
Eclipse Total 97 69 58 72 81

Table 9.2: Cost and benefit of annotations
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Another trend is that the benefit derived from annotations corresponds roughly to the effort.
There are some outliers, for example Mouse Motion Listener Applet requires seven annotations
but provides just two specifications, and Right Click Menu requires just five annotations but
provides twelve specifications. Overall, the Applet total is 36 annotations to get 37 specifications,
and the Eclipse total is 58 annotations to get 81 specifications.

9.2.5 Composability

Design fragments offer no composability guarantees. That is, a programmer who uses design
fragments A and B has no guarantee that they do not conflict in subtle ways. It is also true that
even a single design fragment is not guaranteed to work – the programmer could have written
an infinite loop, or another debilitating bug, in another part of the program that prevents the
correctly implemented design fragment from working. Furthermore, within a method, a design
fragment gives no guidance as to how to interleave the required parts of two design fragments.

Design fragments are partial specifications. They rely on the skill of programmers to im-
plement solutions and resolve conflicts at a local level. Design fragments identify the relevant
places in the source code a programmer should look to resolve a bug, making it easier for them to
find the places to look, and making it easier for them to understand the non-local interaction. In
our experience, these composability concerns have been minor because programmers are able to
resolve any conflicts at this local level. Design fragments have the same composability problems
as any recipe-like solution, including natural language tutorials and books.

Additionally, while no guarantee exists, design fragment authors should strive to create cat-
alogs where all the design fragments are indeed composable, much the same way that class
libraries are built with classes that are known to work together.

9.2.6 Expressiveness Limitations

The design fragment language has a number of expressiveness limitations, some of these can be
worked around using comments in the design fragment. This approach is unsatisfactory from a
specification perspective, but may be sufficient from a usability perspective.

Over-specifying a superclass. A design fragment may specify that the client must subclass
from the ViewPart class, or it could specify ViewPart’s parent, WorkbenchPart. If
most of the time clients will be subclassing from ViewPart then authors will be tempted to
write this constraint into the design fragment. The design fragment could specify the more
accurate constraint of subclassing from WorkbenchPart. Being more accurate, however,
works against a design fragment’s ability to point the programmer to relevant resources, which
in this case would be ViewPart. It is possible to add a comment in the design fragment advising
the programmer about the existence of possibly more appropriate subclasses.

Over-specifying fields or parameters. In a design fragment, it is easy to specify that the
client must have a field, or use a parameter, but it is not possible to allow either in an interchange-
able way. The intent might be “the source code must hold onto this object from the framework
for later, either in a field, a local variable, or just pass it around as a parameter”. Consequently
there are cases where the design fragment over-constrains the client programmer.
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Over-specifying code blocks. While the set of constraints is open ended, it is not straight-
forward to specify the case where large blocks of code are part of a design fragment. While it
is easy to say that the client programmer should invoke methods A, B, C, D on the framework
in sequence, this will over-constrain the client programmer when some interleavings are also
allowed, such as B, A, C, D. Trying to encode all such legal variations is contrary to the main
idea of design fragments: to encode a single known-good solution. Perhaps the pragmatic choice
would be to encode a tightly constrained set of solutions, with the sequence of methods encoded
using a path expression.

Optional parts. Design fragment authors often want to advise client programmers that some
items, while not required, are commonly present. An example of this occurs when creating a
Menu item in Eclipse: it is required that an Action be initialized and placed into the Menu,
but it is optional that the Action’s icon be specified. Currently the design fragment language
cannot express such optionality, but we encode it informally using comments.

Binding roles multiple times. Programmers may desire to use a design fragment multiple
times without rebinding every role. For example, a Menu may have dozens of Actions in it.
It is tempting declare just one design fragment instance, with the role for the Action bound
multiple times. This saves the client programmer the effort of binding the parts that stay the
same, such as the bindings to the Menu role. Another option is to have smarter tools that aid
in binding, which would keep the current single-binding system, but reduce the programmer’s
effort to express the bindings. A tool could offer the option of cloning most of the bindings for
an existing design fragment instance, and then guide the programmer to bind the role for the
Action.

Unavailable source code. The source code to be annotated with bindings is not always
available for editing. This can happen when a framework class plays a role in a design fragment,
yet that code is read-only. This problem with annotations has been addressed by the Fluid [26]
project where the in-code annotations are augmented by “standoff annotations” that can be placed
in a separate file. Such an option allows programmers to choose the appropriate solution for their
code but is not yet implemented in the design fragments tools.

9.2.7 Long Tail of Design Fragment Catalog

Some distributions have a long tail [2] where the majority of the area under the curve falls under
the tail. The implication for design fragments is that a catalog containing the most popular design
fragments may be missing the majority of them. Programmers looking in the catalog may not
find what they are looking for.

Our data from the Applet catalog indicates that a long tail is either not present, or does not
hurt the utility of design fragments. After examining the twenty demo Applets provided by the
framework authors, we found just two additional design fragments after examining thirty-six
Applets from the internet, and one of those was deprecated. The new, non-deprecated design
fragment was used in just one Applet. So, after creating the catalog from the initial twenty
Applets, we were able to describe thirty-five of the thirty-six Applets using our existing design
fragments. For the Applet framework, a client program appears likely to be well served by our
catalog.
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Since we have not created catalogs for many frameworks, it is possible that a long tail dis-
tribution exists for them, and it will impair the usefulness of the catalog. If the long tail con-
tains unnecessary diversity, that is, variants of existing design fragments, a programmer may be
equally well served by a variant already in the catalog that accomplishes the same goal. Also, a
client program with only half of its client-framework interactions bound to design fragments still
enjoys the benefits of design fragments, since, as discussed in Section 4.5, the benefits of design
fragments accumulate with each one that is bound.

9.2.8 Java Language

Our case studies and tools all work exclusively with the Java language. There is a concern
that design fragments have only been shown to work with this one language. However, the
most popular object-oriented languages today, such as Java, C++ and C#, have quite consistent
features, especially those features relevant to client-framework interactions. This core set of
concepts includes classes, fields, methods, inheritance, and interfaces. The design fragment
language directly expresses these core concepts, as shown earlier in Figure 4.2.

The C++ language [61] does not have interfaces, but does have multiple inheritance, and an
abstract class can be used for the same effect as an interface. However, a C++ framework that
relied upon multiple inheritance to provide methods would go beyond our core features. C++
has some different ways of providing access, such as friend classes. C++ also has the features of
C, including function pointers, that could be used by a framework.

The C# language [46] is quite close to Java, but like C++ it has a few additions. Delegates
work similarly to function pointers in C++, and properties allow the difference between fields
and methods to be blurred. Like Java, C# has attributes, which enable declarative metadata to be
associated with program elements.

Because of the similarity of concepts between the mainstream object-oriented languages, the
design fragment language should already be able to handle many C++ and C# frameworks. With
a few additions to its core concepts, would be able to handle all of them. Some Java frameworks,
including the Enterprise Java Beans 3.0, now require the use of annotations, so that should be the
first addition to the core concepts.

9.3 Discussion

Looking back across our experiences with design fragments, four items are worthy of discus-
sion. The first is that framework authors, using existing object-oriented mechanisms, still have
difficulties encapsulating some private design details within the framework. The second is the
observation that demo client programs have a virtuous effect in that they reduce the variability
of client-framework interactions. The third is our advice to framework authors, who we believe
should deliver a large set of demo programs, sketch design fragments to rate the complexity of
the client-framework interactions, and, deliver a catalog of design fragments for their framework
that is bound to their demo programs. Finally, we have initial evidence that it is possible to
refactor frameworks so that client code is more assurable.

112



9.3.1 Framework Encapsulation

The essence of encapsulation is that components publish details (API’s) that other components
can depend on; other details are private and may change. Today, framework authors have a
limited ability to publish details of what to depend on. Since frameworks are built from object-
oriented parts, they can mark classes and methods as private, and they can use interfaces to hide
implementation classes. But many framework constraints involve object lifecycles and invoca-
tion protocols, and these cannot be expressed except through natural language documentation.
When programmers infer these constraints by reading other client programs, they may make
mistakes.

Consequently, Applet client programmers have accidentally or deliberately relied on an in-
ternal detail of the Applet framework, specifically, that there is no runtime error if you fail to
deregister for events. This is a private detail of the framework implementation and should be
subject to change. However, it is hard to imagine that the Applet framework authors can change
this private detail, since our data indicates that between 90% or more of Applets on the inter-
net (see table 6.2) rely on this detail. Note that similar failures to deregister would, in other
frameworks, cause runtime errors.

The demo programs distributed with the Applet framework appear to have failed to commu-
nicate this framework constraint, possibly because the client-framework interaction is non-local,
and consequently client programmers inferred the requisite client-framework interaction incor-
rectly. Design fragments can help framework authors to clearly articulate known-good solutions,
and ensure that programmers do not miss non-local details. Design fragments help because they
make non-local interactions obvious, and because tools can flag non-conformance.

9.3.2 Examples as Seed Crystals

In our examination of large numbers of client programs found on the internet it became clear
that the example programs provided by framework authors were acting as seed crystals, caus-
ing client programmers to interact with the framework in the same way the example did. The
evidence for this is syntactic correspondence between the example and internet programs, in-
cluding identical field names, identical method names, and identical bugs. With the exception of
efficiently propagating bugs, we believe that the seed crystal effect is completely virtuous.

Frameworks generally have large API’s, which means many different ways that clients could
accomplish their goals. Not all of these ways were anticipated by the framework authors and
some interactions may reveal latent bugs in the framework. Sticking to the known-good solu-
tion means less chance of revealing these framework bugs, which in turn means more reliable
software.

The seed crystal effect also reduces the diversity of client programs. This is a boon during
evolution of programs since a programmer new to this code who knows the framework-provided
examples will already know both the intent and implementation of the code just by recognizing
the field or method names. Evolution and maintenance should be easier and more accurate.

Design fragments themselves can be seen as a formalization of the seed crystal effect. Not
only does the code imitate its seed crystal, this intent is declared in the code and assured through
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tools. Catalogs are an even more concentrated source of these seed crystals than example pro-
grams, so they may be more effective at reducing diversity.

It is likely that design fragments have been shown to work well partly because both the
catalog and the client programs we analyzed derived from a common ancestor: the example
programs provided by the framework authors. It would be a mistake to view this as a liability of
the technique. It is instead a reflection of real world programming practice in which the design
fragments technique must show its value, and no modern framework is delivered without at least
some example programs. One such example program, the Java Pet Store [62], has become so
famous that it has been used as a benchmark between frameworks [45].

9.3.3 Advice to Framework Authors
Given the virtuous seed crystal effect that example programs can have, we recommend that each
new framework be delivered with a set of example programs. These example programs should
exercise most of the framework interface, and will reflect the client-framework interactions that
are anticipated by the framework authors. Of course we believe that these example programs
should also be bound to a catalog of design fragments.

Even if they do not formalize them into a catalog, framework authors can still benefit from
sketching their expected client-framework interactions using the ideas of design fragments. Do-
ing this will yield useful insights into the interface they have designed, including how to refactor
the interface for simplicity, ease of use, and accuracy.

If they change nothing about their interfaces, framework authors who create a catalog of
design fragments will have made it easier to create client programs. Another option is for authors
to create more complex interfaces, providing client programmers with more power and flexibility,
and use design fragments to help manage the increased complexity.

9.3.4 Framework Refactoring Opportunities
It should be possible to refactor frameworks such that client-framework interactions are more
assurable. Framework authors always make trade-offs in the design of their frameworks. Now
that design fragments and some analyses exist, framework authors could design their frameworks
differently. Not all framework constraints can be analyzed by the existing tools, so framework
authors should prefer to impose those constraints that can be checked.

We experienced one example where the framework could be refactored, yielding client code
that was more assurable by our analyses. In this example, the client code must override the
framework select method, which is invoked when an object is selected:

public boolean select (Object o);

The framework passes the object that is selected to the client program, and the client program
tests the object, returning a boolean value based on the test. If the object is an EditPart, the
client must extract the model from it before performing any tests. Before the refactoring, client
code extracted the model itself:

public boolean select (Object o) {
if (o instanceof EditPart) o = ((EditPart )o).getModel ();
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return // some test on the object
}

Our provided set of specifications does not yet express checks for instanceof, but we can
check that the client code invokes a framework service method. The refactoring introduced
a new framework service method called unwrapToElement that performed the testing for
EditParts and the extraction of the model. This yields equivalent client code, but the new
client code can be checked through off-the-shelf analyses, since every client can be required to
call the framework service method:

public boolean select (Object o) {
o = EclipseHelper.unwrapToElement (o);
return // test on o

}

This refactoring has the benefit that the code is slightly simpler and that tools can easily assure
conformance. Aiding framework evolution, it is now possible to add new tests or conditions to
unwrapToElement without disturbing existing client code.

When a client-framework interaction is not currently assurable, it is possible to either in-
crease the expressiveness of the language or refactor the framework. While it might seem that
framework authors would always avoid refactoring, the above example shows that complexity
in the client code can be hoisted into the framework and also provide evolution benefits to the
framework authors.

9.4 Contributions
Through its case studies, this work has directly demonstrated three primary contributions to
software engineering.

First, it provides a new technique to help programmers use frameworks. Design fragments
and the tools directly address the problems we have identified with frameworks. Design frag-
ments improve on previous abstractions by describing relevant resources in the framework, con-
necting object-oriented code with external declarative configuration files, and by enabling new
constraints and tools to be added to our predefined set. This helps client programmers who are
creating new code and who are evolving existing code.

Second, it provides a systematic way to increase code quality. Design fragments provide
a means to communicate known-good designs to programmers, and, unlike simple copying of
examples, a means of influencing the uses of that design so that revisions can be propagated.
Bindings between design fragments and client programs express design intent, and this enduring
expression of intent enables conformance assurance from both existing and future analysis tools.
This helps client programmers, and also helps writers of analysis routines because the stated
design intent removes the need to infer intent.

Third, it provides an empirically-based understanding of how clients use frameworks, which
aids researchers in choosing research directions and aids framework authors in delivery of new
frameworks. Specifically, the observed variety of client-framework interactions is very low, de-
spite the opportunity for high variety.
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In addition to the contributions demonstrated through our case studies, we expect this work
to enable other benefits to software engineering.

Design fragments may significantly improve a programmer’s ability to manage complexity.
Design fragments make non-local code interactions evident, and analysis tools help prevent code
evolution from breaking code that is bound to design fragments. Both of these improve a pro-
grammer’s ability to manage complexity. As a consequence, programmers may be able to build
more complex programs, or framework authors may design more complex frameworks, since
they know that design fragments make the added complexity manageable.

Design fragments may enable a new technique to audit and improve the design of existing
frameworks, yielding reduced complexity and increased assurability of client-framework interac-
tions. Design fragments themselves can be analyzed for complexity through an inventory of the
interactions they specify. Framework complexity could be improved by reducing the complexity
of the design fragments it employs. Design fragments may form the basis for metrics to quantify
the complexity of client-framework interaction.

9.5 Future work
Our work on design fragments suggests that continued work in the area will be fruitful. In the
short term, we believe that improvements in the design fragments language, tools, and analysis
will reduce its burden and increase its benefits.

For the design fragments language, some minor changes could have large impacts. Program-
mers currently have to provide bindings even when the binding could be inferred. For example,
the init method is a template method defined by the Applet superclass, and consequently its
name cannot be changed. The design fragments language should express and recognize situa-
tions like these, and not require programmers to write bindings. In addition, the design fragments
language could encode relationships between design fragments. A design fragment can have pre-
requisites or co-requisites, and it can also be related to a more abstract pattern, like the Observer
pattern [23]. The design fragment language could express these relationships, which would pro-
vide a richer understanding to users, as well as enabling the pre-requisites and co-requisites to
be checked by tools.

Other tool improvements would reduce programmer effort to use design fragments. Providing
tools to facilitate binding a design fragment to source code, to mine source code for unbound uses
of design fragments (see section 8.2.8), and to author design fragments would reduce user effort,
and might consequently speed adoption. Once a design fragment mining tool exists, it becomes
reasonable to flag anti-patterns, and refer the programmer to a replacement design fragment.

A clear opportunity exists to integrate existing code analysis tools with the design fragments
tools, for example, the Fluid [26] and ESC/Java [9] tools. Some tools require their own annota-
tions in the Java code. It should be possible to extend the design fragments language to refer to
these annotations directly, enabling a design fragment to insist that particular annotations exist
for the design fragment to be satisfied. For example, a design fragment representing a thread-safe
producer-consumer pattern could insist that Fluid annotations exist, so that the Fluid tool could
check the safety of the code. Additionally, a small improvement to the existing design fragments
required-call analysis would yield a large benefit. It currently insists that the call exists within
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the bound method, so refactoring the call into a subroutine will cause a constraint violation. It
could be revised to look within subroutines to make it more resilient.

While it was not our intention to discover bugs in existing code, our case studies did reveal
systematic errors in client programs. If, in the future, design fragments are used extensively,
there is an opportunity to focus programmers’ attention on code that deviates from the standard
practice as defined by the catalog(s) of design fragments. Non-conforming code may well be
correct, but our experience shows that it is a worthwhile place to apply attention in code reviews
and testing.

While these improvements can be implemented rather quickly, and would significantly in-
crease the adoptability of design fragments, their contribution to the field of software engineering
would be modest. However, our research on design fragments also suggests three areas of longer
term research with potential to significantly impact software engineering.

First, as discussed in section 9.3.4, it should be possible to refactor frameworks such that
client-framework interactions are more assurable. It may be possible to provide a standard set
of refactorings for framework interfaces, or a set of guidelines, that would help framework au-
thors transform existing interfaces or build new ones. Changes such as these could significantly
increase code quality.

Second, the design fragment language expresses how clients can interact with a framework,
specifying the object-oriented interactions that are necessary. It is currently not possible to dis-
cuss client-framework interaction, or framework constraints, without referencing object-oriented
mechanics, yet different frameworks implement the same concepts with different mechanics. For
example, events can be communicated to a client program with a method call on a distinguished
method, a method call with a distinguished parameter, or via a distributed event bus. It is also
the case that different concepts have identical mechanics. For example, events from a framework
can be synchronous or asynchronous, yet the method call on the client program would look the
same. What is needed is a language that expresses the concepts of framework constraints and
client-framework interaction without referencing object-oriented mechanics.

Once these framework concepts are in place, it should be possible to design a next generation
object-oriented language where framework concepts have first class representation. A similar
path was taken with software architecture, where the concepts were first developed [57], then
merged into Java with the ArchJava [1] language. A similar integration would be fruitful between
architecture description languages [24] and framework concepts.

Third, from an implementation perspective, we take for granted that a client program writ-
ten for one framework will not work on another framework. We once had the same perspective
about client programs for operating systems, but it is now common to write one program that
is targeted at multiple operating systems. While the points of variability and the strategies for
re-targeting are now well understood for operating systems, we do not yet have a similar under-
standing for frameworks. Solutions range from heavyweight, like fully emulating the hardware,
to lightweight, like using different math libraries. The Eclipse Rich Client Platform [42] allows
client programs to work across the operating systems supported by Eclipse, but does not address
how to re-target an application for a different framework. Sometimes incompatibilities will be
insurmountable, but considering the similarity of desktop environments, and the similarities of
application servers, it seems possible that we can remove the accidental incompatibilities and
re-target many client programs.
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9.6 Summary
Frameworks are a valuable way to share designs and implementations on a large scale. Client
programmers, however, have difficulty using frameworks. They find it difficult to understand
non-local client-framework interactions, design solutions when they do not own the architectural
skeleton, gain confidence that they have engaged with the framework correctly, represent their
successful engagement with the framework in a way that can be shared with others, ensure their
design intent is expressed in their source code, and connect with external files.

A design fragment is a specification of how a client program can use framework resources
to accomplish a goal. From the framework, it identifies the minimal set of classes, interfaces,
and methods that should be employed. For the client program, it specifies the client-framework
interactions that must be implemented. The structure of the client program is specified as roles,
where the roles can be filled by an actual client program’s classes, fields, and methods. A design
fragment exists separately from client programs, and can be bound to the client program via
annotations in their source code. These annotations express design intent; specifically that it is
the intention of the client programs to interact with the framework as specified by the design
fragment.

The thesis of this dissertation is: We can provide pragmatic help for programmers to use
frameworks by providing a form of specification, called a design fragment, to describe how a
client program can correctly employ a framework and by providing tools to assure conformance
between the client program and the design fragments.

To demonstrate that the help provided by design fragments and assurance tools is pragmatic,
we collected evidence to support three subordinate hypotheses. The first was that design frag-
ments can be used with existing large commercial frameworks, real programming languages, and
off-the-shelf code. The second was that the variety of design fragments to accomplish a given
goal is limited, so a small catalog of design fragments can have good coverage of the code seen in
practice. And the third was that analysis can provide programmers with assurance that their code
conforms to the constraints of the framework as expressed in design fragments. We built tools
into an IDE to demonstrate how design fragments could alleviate the difficulties experienced by
client programmers, and used these tools to collect empirical evidence on how client programs
interact with frameworks.

We performed two case studies on commercial Java frameworks, using demo client programs
from the framework authors, and client programs we found on the internet. The first case study,
on the Applet framework, yielded a complete catalog of twelve design fragments based on our
analysis of fifty-six Applets. There was evidence that Applets we collected from the internet had
been influenced by demo Applets provided by the framework authors, and of incorrectly inferred
framework constraints. The second case study, on the larger Eclipse framework, yielded a partial
catalog of fourteen design fragments based on our analysis of more than fifty client programs.
There was evidence on this framework also that client programs from the internet were influenced
by the demo client programs. There was also evidence that client programs were interacting with
the framework following consistent patterns, which we were able to encode as design fragments.

This work provides three primary contributions to software engineering. First, it provides
a new technique to help programmers use frameworks. Design fragments improve on previous
abstractions by describing relevant resources in the framework, connecting object-oriented code
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with external declarative configuration files, and by enabling new constraints and tools to be
added to our predefined set.

Second, it provides a systematic way to increase code quality. Design fragments provide
a means to communicate known-good designs to programmers, and, unlike simple copying of
examples, a means of influencing the uses of that design so that revisions can be propagated.
Bindings between design fragments and client programs express the programmer’s design intent,
and this enduring expression of intent enables conformance assurance from both existing and
future analysis tools.

Third, it provides an empirically-based understanding of how clients use frameworks, which
aids researchers in choosing research directions and aids framework authors in delivery of new
frameworks. Specifically, the observed variety of client-framework interactions is very low, de-
spite the opportunity for high variety.
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Appendix A

Adding a New Specification

The design fragments language was designed to be extensible by users. The easiest extension is
simply to write the specification in natural language within a freeformspec, but such an extension
cannot be checked by tools. Users can add structured, checkable specifications to those already
in the design fragments language. Indeed, all of the specifications already in the language are
implemented using the same technique we will describe here.

The following sections walk through adding a new specification and an analysis tool to check
that specification. Our example comes from the Applet framework. When an Applet is embedded
in a web page, the author of that web page can pass parameters to the Applet. These parameters
can be anything, but are often configuration values like the height and width of the applet, or pre-
ferred colors. It is possible to invoke the getParameterInfo() method on the Applet to ask
it which parameters it needs. This callback method on the Applet must be implemented by each
Applet, and should return an array containing every parameter that it needs, and a description of
what that parameter is used for.

The Applet itself can ask the framework what parameters have been passed in from the web
page. This is done by calling the framework service method getParameter(parameter-
Name) for each parameter. It makes sense that the array of parameters returned by getParam-
eterInfo() should match the parameters that the Applet checks by calls to getParam-
eter(parameterName). It is easy to imagine a programming error where an additional
parameter is checked yet not reported. We will start off by writing our specification in natural
language, convert it over to a structured specification, then show how an analysis tool could
check this specification.

A.1 New Specification

We will create a new specification in the design fragment language called parametersChecked-
AndReportedSpec. The current Parameterized Applet design fragment is shown in Figure A.1.

As you can see in bold, our design fragment currently contains freeformspec that tells the
programmer about the constraint, but since it is written in natural language, it cannot be parsed by
a tool and enforced. We will change that freeformspec to parametersCheckedAndReportedSpec
specification as shown in Figure A.2. This specification has been placed on the getParam-
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<class>
<name>RoleApplet</name>
<superclass>java.applet.Applet</superclass>
<method>
<name>init</name>
<returnvalue>void</returnvalue>
<requiredcallspec

targetobject="this"
targetmethod="getParameter"
arguments="the name of the parameter"/>

<freeformspec text="See if web page that contains this applet
has provided this parameter" />

</method>
<method>
<name>getParameterInfo</name>
<returnvalue>String [][]</returnvalue>
<freeformspec text="Should check that every parameter checked

in this program via getParameter(), usually in init(),
is in the returned array" />

</method>
</class>

Figure A.1: Current Parameterized Applet design fragment

eterInfo method but could also be placed on the init method or even on the RoleApplet
class itself. In order for the design fragment parser to understand this new specification, we must
declare it in the design fragment XML Schema Definition (XSD) [27].

The design fragment XSD encodes the syntax of the XML representation of the design frag-
ment language. Our new specification, shown in Figure A.3, is expressed in XSD. The first
bolded section declares that our new specification can be added to a method specification, and
the second bolded section defines our new specification.

At this point we can now write design fragments containing the parametersCheckedAnd-
ReportedSpec and the parser will understand them. In some cases it would be appropriate to
stop here with a just a specification, for example if tooling was currently unable to check such

<class>
...
<method>
<name>getParameterInfo</name>
<returnvalue>String [][]</returnvalue>
<parametersCheckedAndReportedSpec />

</method>
</class>

Figure A.2: Improved Parameterized Applet design fragment
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<xs:complexType name="method-type">
<xs:sequence maxOccurs="unbounded" minOccurs="0">
<xs:choice>
<xs:element name="name" type="xs:string" ... />
<xs:element name="abstract" type="empty-type" ... />
<xs:element name="returnvalue" type="xs:string" ... />
<xs:element name="code" type="xs:string" ... />
<xs:element name="argument" type="method-argument-type" ... />
<xs:element name="requirednewinstance"
type="required-new-instance-type" ... />

<xs:element name="requiredcallspec"
type="required-call-spec-type"... />

<xs:element name="freeformspec" type="freeform-spec-type" ... />
<xs:element name="parametersCheckedAndReportedSpec"
type="parameterscheckedandreported-spec-type"
minOccurs="0" maxOccurs="unbounded" />

<xs:element name="comment" type="comment-type" ... />
</xs:choice>

</xs:sequence>
</xs:complexType>

...
<xs:complexType name="parameterscheckedandreported-spec-type">

<xs:attribute name="comment" type="xs:string" use="optional" />
</xs:complexType>

Figure A.3: Design fragment XSD for parameter checking
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<extension point="DesignFragments.specification">
<specificationtype
parent="method"
name="parametersCheckedAndReported"
description="Checked parameters = reported parameters" >

<specattribute
key="comment"
valuetype="string"
required="false" />

</specificationtype>
<presenter class="my.package.ParameterSpecPlugin" />
<checker class="my.package.ParameterSpecPlugin" />

</extension>

Figure A.4: Declaration of presenter and checker in plugin.xml

a specification. We will continue on and show how the checking could be implemented for our
new specification.

A.2 Tool Extension
When the design fragment tool see a specification in a design fragment, it consults the list of
specification checkers to find one that is registered to handle this kind of specification. If it finds
a matching checker, it hands the specification and some context information to the checker. So
when writing a new specification checker, we need to ensure that our new checker appears on the
list of checkers. This is done by declaring the checker as an Eclipse plugin, which is done in the
plugin.xml file for the design fragment tool. Figure A.4 shows the declaration of a checker
for our new specification.

The third line, parent="method", declares that this specification applies to a method in-
stead of a class or field. The second and third lines from the end declare which Java classes
provide the implementation for this checker. The implementation is required to provide both a
checker, which decides if the specification conforms to the source code, and a presenter, which
provides the text and images necessary for this specification to be put into the user interface.

The final step is to write the Java code that implements the checker and presenter classes.
The checker and presenter must implement the IDFMethodSpecAnalyzer and IDFSpec-
Presenter interfaces, shown in Figure A.5. When the design fragment tool invokes the
checker, it passes in a reference to the source code Abstract Syntax Tree node (it is inside the
DFUserDeclaration), which enables the checker to perform analysis.

A.3 Summary
All of the provided specifications have been specified in the manner we have described here.
Users can also add their own class, field, method, or XML specification by following the same
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public interface IDFMethodSpecAnalyzer {
public boolean isEnabled();
public void setEnabled(boolean value);
public String getName();
public void setName(String aName);
public String getDescription();
public void setDescription(String aDescription);
public boolean checkMethodSpec(
DFMethodInstance methodInst,
DFSpecInstance methodSpecInst,
DFUserDeclaration declaration);

}
...
public interface IDFSpecPresenter {

public String getLabel( DFSpec aSpec );
public Image getImage();
public int category();

}

Figure A.5: Interfaces for Analyzer and Presenter

process. When documenting a constraint, the easiest option is to document it in natural language
using the existing freeformspec specification, but since they are in natural language, they cannot
be analyzed by tools. The next step is to create a new structured specification as we showed
above. These specifications can have their own parameters, and they capture design intent more
precisely. These specifications are preferred over natural language specifications even when no
analysis for them yet exists, because their structured nature holds the promise that future tools
could analyze the specification, and because they help human readers and authors. Finally, anal-
ysis tools can be defined using a combination of XML and Java code that work with interfaces
provided by the design fragment tool.
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Appendix B

Design Fragment Language

B.1 Abstract Syntax
This is the abstract syntax of the design fragment language, described using Extended Backus-
Naur Form (EBNF) [20]. The first part defines the object-oriented structure. It cannot be changed
by users. Parts in bold are where the specifications fit in. Note that unstructured text is italicized,
as in the name-text in the first line.

design-fragment = name-text , goal-text , [ is-deprecated ] ,
framework-provided , programmer-required ;

is-deprecated = “yes” | “no” ;
framework-provided = { type } ;
programmer-required = { type } , [ { xml-file } ] ;
type = class | interface ;
class = name , [ superclass ] , [ implements-interface ] ,

[ { field } ] , [ { method } ] , [ { class-spec } ] ;
interface = name , [ superclass ] , [ { field } ] , [ { method } ] ;
superclass = name ;
implements-interface = name ;
field = name , field-type-text , [ { field-spec } ] ;
method = name , return-type-text , [ { argument } ] ,

[ is-abstract ] , [ source-code ] , [ { method-spec } ] ;
argument = name , argument-type-text ;
is-abstract = “yes” | “no” ;

The second part defines the structure for configuration files.
xml-file = name , xml-node ;
xml-node = name , [ { xml-node} ] , [ xml-role-name-text ] ,

[ { xml-spec } ] ;

The third part defines the specifications. Additional specifications can be added by users.
class-spec = class-referenced-in-xml-spec ;
class-referenced-in-xml-spec = xml-role-name ,

attribute-name-text ;

127



field-spec = ; (* no field specs pre-defined *)
method-spec = freeform-spec | required-call-spec |

required-new-instance-spec ;
freeform-spec = specification-text ;
required-call-spec = target-class-name ,

target-method-name , arguments , purpose ;
required-new-instance-spec = target-class-name ,

arguments , purpose ;
xml-spec = string-match-spec | attribute-exists-spec ;
string-match-spec = specification-purpose ,

xpath-predicate-1 , xpath-predicate-2 ;
attribute-exists-spec = attribute-name ;

B.2 XML Schema Definition

This is the XML Schema Definition [27] for the concrete syntax of the design fragment language.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://designfragments.org/df1.0"
xmlns="http://designfragments.org/df1.0">
<!-- Definition of complex elements -->

<xs:element name="designfragment">
<xs:complexType>

<xs:sequence maxOccurs="unbounded" minOccurs="0">
<xs:choice>

<xs:element name="name" type="xs:string" />
<xs:element name="deprecated" type="empty-type"

minOccurs="0" maxOccurs="1"/>
<xs:element name="goal" type="xs:string" />
<xs:element name="framework-provided"

type="framework-provided-type" />
<xs:element name="programmer-created"

type="programmer-created-type" />
<xs:element name="comment" type="comment-type"

minOccurs="0" maxOccurs="unbounded" />
</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

<!-- Definition of complex types -->

<xs:complexType name="empty-type">
</xs:complexType>
<xs:complexType name="framework-provided-type">

<xs:sequence maxOccurs="unbounded" minOccurs="0">
<xs:choice>

<xs:element name="interface" type="class-type"
minOccurs="0" maxOccurs="unbounded"/>
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<xs:element name="class" type="class-type"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="comment" type="comment-type"
minOccurs="0" maxOccurs="unbounded" />

</xs:choice>
</xs:sequence>

</xs:complexType>

<xs:complexType name="programmer-created-type">
<xs:sequence maxOccurs="unbounded" minOccurs="0">

<xs:choice>
<xs:element name="interface" type="class-type"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="class" type="class-type"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="xmlfile" type="xmlfile-type"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="comment" type="comment-type"

minOccurs="0" maxOccurs="unbounded" />
</xs:choice>

</xs:sequence>
</xs:complexType>
<xs:complexType name="class-type">

<xs:sequence maxOccurs="unbounded" minOccurs="0">
<xs:choice>

<xs:element name="name" type="xs:string"/>
<xs:element name="abstract" type="empty-type"

minOccurs="0" maxOccurs="1"/>
<xs:element name="superclass" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="implementsinterface" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="field" type="field-type"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="method" type="method-type"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="classreferencedineclipseextensionpoint"

type="class-referenced-in-eclipse-extension-point-type"
minOccurs="0" maxOccurs="unbounded" />

<xs:element name="comment" type="comment-type"
minOccurs="0" maxOccurs="unbounded" />

</xs:choice>
</xs:sequence>

</xs:complexType>
<xs:complexType name="interface-type">

<xs:sequence maxOccurs="unbounded" minOccurs="0">
<xs:choice>

<xs:element name="name" type="xs:string"/>
<xs:element name="superclass" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="implementsinterface" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
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<xs:element name="field" type="field-type"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="method" type="method-type"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="comment" type="comment-type"
minOccurs="0" maxOccurs="unbounded" />

</xs:choice>
</xs:sequence>

</xs:complexType>
<xs:complexType name="field-type">

<xs:sequence maxOccurs="unbounded" minOccurs="0">
<xs:choice>

<xs:element name="name" type="xs:string"/>
<xs:element name="type" type="xs:string"/>
<xs:element name="freeformspec" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="comment" type="comment-type"

minOccurs="0" maxOccurs="unbounded" />
</xs:choice>

</xs:sequence>
</xs:complexType>
<xs:complexType name="method-type">

<xs:sequence maxOccurs="unbounded" minOccurs="0">
<xs:choice>

<xs:element name="name" type="xs:string"
minOccurs="1" maxOccurs="1"/>

<xs:element name="abstract" type="empty-type"
minOccurs="0" maxOccurs="1"/>

<xs:element name="returnvalue" type="xs:string"
minOccurs="1" maxOccurs="1"/>

<xs:element name="code" type="xs:string"
minOccurs="0" maxOccurs="1"/>

<xs:element name="argument" type="method-argument-type"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="requirednewinstance"
type="required-new-instance-type"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="requiredcallspec"
type="required-call-spec-type"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="freeformspec" type="freeform-spec-type"
minOccurs="0" maxOccurs="unbounded" />

<xs:element name="comment" type="comment-type"
minOccurs="0" maxOccurs="unbounded" />

</xs:choice>
</xs:sequence>

</xs:complexType>
<xs:complexType name="method-argument-type">

<xs:sequence maxOccurs="unbounded" minOccurs="0">
<xs:choice>

<xs:element name="name" type="xs:string"/>
<xs:element name="type" type="xs:string"/>
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<xs:element name="comment" type="comment-type"
minOccurs="0" maxOccurs="unbounded" />

</xs:choice>
</xs:sequence>

</xs:complexType>
<xs:complexType name="xmlfile-type">

<xs:sequence maxOccurs="unbounded" minOccurs="0">
<xs:choice>

<xs:element name="name" type="xs:string"/>
<xs:element name="xmlfilespecs" type="xmlfilespecs-type"

minOccurs="0" maxOccurs="1"/>
<xs:element name="contents" type="contents-type"

minOccurs="0" maxOccurs="1"/>
<xs:element name="comment" type="comment-type"

minOccurs="0" maxOccurs="unbounded" />
</xs:choice>

</xs:sequence>
</xs:complexType>
<xs:complexType name="xmlfilespecs-type">

<xs:sequence>
<xs:element name="stringmatchspec"

type="string-match-spec-type"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="contents-type">
<xs:sequence>

<xs:any minOccurs="0" maxOccurs="unbounded"
processContents="skip" />

</xs:sequence>
</xs:complexType>
<xs:simpleType name="comment-type">

<xs:restriction base="xs:string" />
</xs:simpleType>
<!-- The following specs should be defined in another XSD -->
<!-- For convenience, they are defined here -->
<xs:complexType name="freeform-spec-type">

<xs:attribute name="text" type="xs:string"/>
<xs:attribute name="comment" type="xs:string" />

</xs:complexType>
<xs:complexType name="required-call-spec-type">

<xs:attribute name="targetobject" type="xs:string"/>
<xs:attribute name="targetmethod" type="xs:string"/>
<xs:attribute name="arguments" type="xs:string" />
<xs:attribute name="purpose" type="xs:string" use="optional" />
<xs:attribute name="text" type="xs:string" use="optional"/>

</xs:complexType>
<xs:complexType name="required-new-instance-type">

<xs:attribute name="target" type="xs:string"/>
<xs:attribute name="arguments" type="xs:string" />
<xs:attribute name="purpose" type="xs:string" use="optional" />
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<xs:attribute name="text" type="xs:string" use="optional"/>
</xs:complexType>
<xs:complexType

name="class-referenced-in-eclipse-extension-point-type">
<xs:attribute name="xmlrolename" type="xs:string" />
<xs:attribute name="attributename" type="xs:string"/>

</xs:complexType>
<xs:complexType name="string-match-spec-type">

<xs:attribute name="reason" type="xs:string" />
<xs:attribute name="p1" type="xs:string"/>
<xs:attribute name="p2" type="xs:string"/>

</xs:complexType>

</xs:schema>
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